
Bethune, I and Gallot, Y 2015 Genefer: Programs for Finding Large Probable 
Generalized Fermat Primes. Journal of Open Research Software, 3: e10, DOI: 
http://dx.doi.org/10.5334/jors.ca

Journal of
open research software

SOFTWARE METAPAPER

Genefer: Programs for Finding Large Probable 
Generalized Fermat Primes
Iain Bethune1 and Yves Gallot2

1	Project Manager, EPCC, The University of Edinburgh, GB  
ibethune@epcc.ed.ac.uk

2	Unaffiliated, FR  
galloty@orange.fr

Genefer is a suite of programs for performing Probable Primality (PRP) tests of Generalised Fermat num-
bers b2n

+1 (GFNs) using a Fermat test. Optimised implementations are available for modern CPUs using 
single instruction, multiple data (SIMD) instructions, as well as for GPUs using CUDA or OpenCL. Genefer 
has been extensively used by PrimeGrid – a volunteer computing project searching for large prime numbers 
of various kinds, including GFNs.

Genefer’s architecture separates the high level logic such as checkpointing and user interface from 
the architecture-specific performance-critical parts of the implementation, which are suitable for re-use. 
Genefer is released under the MIT license. Source and binaries are available from www.assembla.com/
spaces/genefer.

Keywords: Computational Mathematics; Number Theory; PRP Testing; Large Integer Multiplication; 
OpenCL; CUDA
Funding statement: Genefer has been developed with partial support from the Centre for Numerical 
Algorithms and Intelligent Software (NAIS), EPSRC grant EP/G036136/1.

(1) Overview
Introduction 
Genefer is a suite of programs for performing Probable 
Primality (PRP) tests of Generalised Fermat numbers 
b2

n
+1 (GFNs). The code implements a Fermat primality 

test, computing ap-1 (mod p) for a candidate GFN p. It is 
a necessary, but not sufficient, condition for p prime that 
this test returns 1, so Genefer pseudo-primes must be sub-
sequently tested for primality using a different program 
such as PFGW [1]. Genefer was originally developed by the 
second author, who managed a manual distributed com-
puting effort between 2000 and 2004, which discovered  
several 100,000 + digit primes [2]. Since 2009, the 
PrimeGrid [3] volunteer computing project has used 
Genefer to extend the search to well over a million digits 
[4] and is currently searching for a world-record sized 
GFN prime. The current version 3.2.7 of Genefer includes  
contributions from a number of developers in the PrimeGrid 
community, and has been open-source since 2011.

Implementation and architecture
Genefer began as several monolithic C codes, each adapted 
for different CPU architectures (32-bit x86, x87 extended 
precision, and x86–64 with SSE2), with differing accuracy 
and performance characteristics. The accuracy manifests 
itself as a limit in the maximum value of b that can be 

tested for a given n before round-off errors are encoun-
tered (see Table 1). The limits are generated directly by 
the program and are checked at runtime. In version 2.3.0 
the code was re-architected by the first author to provide a 
consistent user interface across all variants, and to define 
an API to separate the architecture-dependent portions of 
the code. The front-end contains common functionality 
such as command line argument parsing, the high-level 
logic which drives the Fermat test algorithm, checkpoint/
restart support, as well as testing and performance bench-
mark. The performance critical implementation of the 
large-integer multiplication kernels are encapsulated by a 
C++ abstract class, and each different optimised version is 
an implementation of this.

Subsequently, many new variants of the multiplication 
step have been added, optimised for modern processor 
Instruction Set Architectures including AVX and FMA3/4, 
as well as GPUs using either CUDA or OpenCL. Originally 
based on Discrete Weighted Transforms (DWT) [5], recent 
versions have been used the z-Transform [6] for improved 
performance and better accuracy. In addition, support for 
BOINC [7] has been added, which enables Genefer to be 
used by many thousands of users transparently via the 
BOINC client installed on their home computers. Since 
version 3.2.0, multiple transform implementations may 
be compiled into a single executable, which may either be 

http://dx.doi.org/10.5334/jors.ca
mailto:galloty@orange.fr
http://www.assembla.com/spaces/genefer
http://www.assembla.com/spaces/genefer


Bethune and Gallot: GeneferArt. e10, p.  2 of 4 

auto-selected at runtime based on the detected hardware, 
or selected by the user. A summary of the performance 
and accuracy of each of the transforms in Genefer 3.2.7 
is given in Table 1. Note that the CUDA implementation 
is a DWT based on NVIDIA CUDA Fast Fourier Transform 
library (cuFFT) while the OpenCL version is a bespoke 
z‑Transform.

The Genefer source code available from SVN contains 
a README with instructions on building the various dif-
ferent versions. Makefiles are provided for Windows, 
Linux, and Mac platforms, along with Visual Studio 2012 
and 2013 solution files for building the GPU versions on 
Windows.

Usage
Every version shares the same command line interface, 
and supports three main modes of operation: interactive, 
where the user navigates a textual menu system; quick test, 
which tests a single candidate GFN specified via the –q  
flag; and batch mode, where a file is read containing a list 
of candidates to be processed.

For example, using the quick test (-q) option executing a 
probable primality test on a single candidate is as simple as:

$ ./genefer_macintel64 -q 2485064^4096+1

Giving the output:
genefer 3.2.8-dev (Apple-x86/CPU/64-bit)
Supported transform implementations: fma3 avx-
intel sse4 sse2 default x87 
Copyright 2001-2015, Yves Gallot
Copyright 2009, Mark Rodenkirch, David 
Underbakke

Copyright 2010-2012, Shoichiro Yamada, Ken Brazier
Copyright 2011-2015, Iain Bethune, Michael 
Goetz, Ronald Schneider
Genefer is free source code, under the MIT license.

Command line: ./genefer_macintel64 -q 
2485064^4096+1 

Priority change succeeded.

Testing 2485064^4096+1...
Using FMA3 transform
Starting initialization...
Initialization complete (0.001 seconds).
Estimated time remaining for 2485064^4096+1 is 
0:00:02
2485064^4096+1 is a probable prime. (26196 digits) 
(err = 0.1562) (time = 0:00:02) 13:23:51

If several candidates are to be tested, they can be listed 
in a file of b, N pairs, one per line (some lines have been 
removed from the code output, for clarity), which is passed 
to Genefer as a command line argument:

$ cat input 
2485064 4096
2485066 4096

$ ./genefer_macintel64 input 
genefer 3.2.8-dev (Apple-x86/CPU/64-bit)
…
Start test of file ‘input’ - 13:41:11

Testing 2485064^4096+1...
…         
2485064^4096+1 is a probable prime. (26196 digits) 
(err = 0.1562) (time = 0:00:02) 13:41:13

Genefer n = 19 n = 22

Implementation b limit ms per mul b limit ms per mul

x871 30,770,000 30.8 16,490,000 288

Default1 945,000 14.5 505,000 133

SSE21 945,000 6.17 505,000 58.3

SSE41 945,000 5.49 505,000 51.9

AVX1 945,000 3.66 505,000 35.8

FMA31 945,000 3.35 505,000 32.6

CUDA
(NVIDIA Tesla C2050) 2

855,000 1.34 485,000 8.50

OpenCL
(NVIDIA Tesla C2050) 2

915,000 0.89 505,000 7.79

CUDA
(NVIDIA Tesla K20m) 3

825,000 1.05 480,000 6.09

OpenCL
(NVIDIA Tesla K20m) 3

915,000 0.54 505,000 4.19

OpenCL
(AMD FirePro V7800) 4

895,000 1.25 505,000 12.9

OpenCL
(AMD FirePro D700) 5

870,000 0.67 500,000 5.81

Table 1: Accuracy and performance of Genefer transform implementations. CPU hardware details: 1Intel Core i7-4750HQ, 
2Intel Xeon X5650, 3Intel Xeon E5-2670, 4Intel Xeon E5620, 5Intel Xeon E5-1650v2.



Bethune and Gallot: Genefer Art. e10, p.  3 of 4 

Testing 2485066^4096+1...
…         
2485066^4096+1 is a probable composite. 
(RES=e011e285900ffee6) (26196 digits) (err = 
0.1562) (time = 0:00:02) 13:41:15

The interactive mode may be accessed by running the 
binary without any arguments.

A “Generalized Fermat Prime Search” discussion forum 
exists at PrimeGrid (http://www.primegrid.com/forum_
forum.php?id=75) where both the developers and users 
of Genefer are active. It is an excellent resource for asking 
questions and is searchable to find solutions to previously-
encountered issues.

Quality control 
Genefer contains a suite of inbuilt tests, which cover both 
prime and non-prime candidates for all relevant values of 
N – 32 to 524288 for CPU builds and 8192 to 4194304 
for GPU builds. These are system tests that carry out an 
entire calculation from start to finish, and verify against 
a known reference result. Typically, these tests are run by 
developers as regression tests during the development of 
new versions.

Development versions of Genefer are identified by a 
version string with the ‘-dev’ suffix. Prior to release, a set 
of acceptance tests are carried out in collaboration with 
PrimeGrid, which includes manual tests against known 
reference results, and integration tests where the release 
candidate app is used in a production environment and 
validated against the previous released version. These tests 
are carried out on all 3 supported platforms (Windows, 
Linux, Mac), for all transform types, and include use of 
the checkpoint/restart functionality. Once the acceptance 
tests are completed, the ‘-dev’ suffix is removed and the 
release version is tagged in SVN. The released binaries are 
then distributed to PrimeGrid users via BOINC.

(2) Availability 
Operating system
Runs on Windows (98 or later), Linux (2.6 or greater) and 
Mac OS X (10.5 or greater)

Programming language
Genefer is written in C++, with Intel vector intrinsics and 
long double types. The CPU version of the code can be 
compiled with gcc 4.9 or clang 3.6. The CUDA and OpenCL 
code are compiled with MS Visual Studio 2012 or later on 
Windows.

Additional system requirements
Genefer requires an x86 CPU. For the CUDA version of 
the code an NVIDIA GPU with compute capability 1.3 or 
above is required. For the OpenCL version, an OpenCL 1.0 
device supporting the cl_khr_fp64 or cl_amd_fp64 
extension (double precision floating point) is required.

Dependencies
Currently, the BOINC libraries are required to build gen-
efer, although the code can be run in a stand-alone mode. 
For CUDA, the code may be compiled with CUDA 3.2 or 

greater. The distributed binaries are linked against version 
5.5 or 6.0. For OpenCL, version 1.0 or greater is required.

List of contributors
Iain Bethune (Versions 2.3, 3.1 architecture, Mac & Linux 
porting)

Ken Brazier, Shoichiro Yamada (CUDA implementation)
Yves Gallot (Main author)
Michael Goetz (BOINC integration and CUDA)
Mark Rodenkirch, David Underbakke (x86/SSE and x87 

assembly code)
Ronald Schneider (Linux porting)

Software location
Code repository 

Name: Assembla.com
�Identifier: http://www.assembla.com/spaces/genefer
Licence: MIT license
Date published: 23-Apr-2015 (version 3.2.7)

Language
English.

(3) Reuse potential
The principal aspects of Genefer which may be of 
interest for re-use are the large-integer multiplication 
routines, which are encapsulated within a C++ abstract 
class defined in ‘Implementation.h’. The API is very 
simple, and so it is easy to develop new implementa-
tions for integration in Genefer, or re-use these in other 
applications. A reference implementation is provided  
in the ‘basicgenefer’ directory. For example, the  
second author is currently developing a new program 
‘cyclo’ for testing another ‘form’ of Cyclotomic primes 
(http://primes.utm.edu/bios/page.php?id=4310), based 
on the Genefer transform code.

Another aspect of the code which might be re-used is 
the checkpoint/restart code. This is encapsulated within 
two C functions read_checkpoint() and write_
checkpoint(), located in the file common/check.
cpp, and has a simple and implementation-independent 
interface. 

Competing Interests
The authors declare that they have no competing interests.

Acknowledgements
Genefer has been developed and deployed with support 
from the PrimeGrid project, in particular John Blazek and 
Rytis Slatkevicius. We are grateful for many members of 
the PrimeGrid user community for contributing to testing 
prior to release of the code.

References
1.	 Fougeron, J, Nash, C and Rodenkirch, M OpenPFGW. 

Available at: https://sourceforge.net/p/openpfgw/.
2.	 Dubner, H and Gallot, Y 2002 Distribution of 

generalized Fermat prime numbers. Math. Comp.,  
71: 825–832. DOI: http://dx.doi.org/10.1090/S0025-
5718-01-01350-3

http://www.primegrid.com/forum_forum.php?id=75
http://www.primegrid.com/forum_forum.php?id=75
http://www.Assembla.com
http://www.assembla.com/spaces/genefer
http://primes.utm.edu/bios/page.php?id=4310
https://sourceforge.net/p/openpfgw/
http://dx.doi.org/10.1090/S0025-5718-01-01350-3
http://dx.doi.org/10.1090/S0025-5718-01-01350-3


Bethune and Gallot: GeneferArt. e10, p.  4 of 4 

3.	 Bethune, I 2015 PrimeGrid: A Volunteer Computing 
Platform for Number Theory, International Conference 
on Computational Mathematics, Computational Ge-
ometry & Statistics (CMCGS) 2015. DOI: http://dx.doi.
org/10.5176/2251-1911_CMCGS15.43 

4.	 Bethune, I and Goetz, M 2014 Extending the general-
ized Fermat prime search beyond one million digits us-
ing GPUs, Proceedings of the 10th International Confer-
ence on Parallel Processing and Applied Mathematics, 
PPAM 2013, Lecture Notes in Computer Science, 8384: 
106–113. DOI: http://dx.doi.org/10.1007/978-3-642-
55224-3_11 

5.	 Crandall, R and Fagin, B 1994 Discrete weighted 
transforms and large-integer arithmetic. Math. Comp.,  
62: 305–324. DOI: http://dx.doi.org/10.2307/2153411

6.	 Bruun, G 1978 z-transform DFT filters and FFT’s. IEEE 
Transactions on Acoustics, Speech and Signal Pro-
cessing, Feb 1978, 26(1): 56–63. DOI: http://dx.doi.
org/10.1109/TASSP.1978.1163036

7.	 Anderson, D 2004 BOINC: a system for public- 
resource computing and storage, Proceedings of the 
5th IEEE/ACM International Workshop on Grid Com-
puting, GRID ’04. IEEE Computer Society, Washington,  
pp. 4–10. DOI: http://dx.doi.org/10.1109/GRID.2004.14

How to cite this article: Bethune, I and Gallot, Y 2015 Genefer: Programs for Finding Large Probable Generalized Fermat 
Primes. Journal of Open Research Software, 3: e10, DOI: http://dx.doi.org/10.5334/jors.ca

Published: 19 November 2015

Copyright: © 2015 The Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by 
Ubiquity Press OPEN ACCESS

http://dx.doi.org/10.5176/2251-1911_CMCGS15.43
http://dx.doi.org/10.5176/2251-1911_CMCGS15.43
http://dx.doi.org/10.1007/978-3-642-55224-3_11
http://dx.doi.org/10.1007/978-3-642-55224-3_11
http://dx.doi.org/10.2307/2153411
http://dx.doi.org/10.1109/TASSP.1978.1163036
http://dx.doi.org/10.1109/TASSP.1978.1163036
http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.5334/jors.ca
http://creativecommons.org/licenses/by/3.0/

	_GoBack

