
Introduction: Open Source and Open Governance
Sustainable software depends on communities of users
and developers who are invested in the software’s suc-
cess [1]. These communities need rules that guide their
interactions, that encourage participation, that guide dis-
cussions, and that lead to resolutions and decisions [2, 3, 4];
we refer to these rules as a community’s governance.
Open governance [4, 5, 6, 7] provides well-defined mecha-
nisms executed through open communications that allow
individuals from diverse and even competing organiza-
tions to interact in neutral forums in a collaborative man-
ner that encourages growth and transforms passive users
into active contributors and project members. For a gen-
eral overview of open source software governance mecha-
nisms, which may take different forms, see [7].

These principles are well-established in the general
open source software ecosystem, but it is our experience
that the adoption of a well-articulated governance model
by scientific and cyberinfrastructure software efforts pri-
marily funded by federal agencies is particularly inad-
equate; these projects compare unfavorably to a host of

cyberinfrastructure-like software efforts such as Apache
Hadoop, Apache Spark, and Apache Mesos that have
open, Apache-style [5] governance. The growing distinc-
tion between being “open source” and being community
managed via a governance model is summarized in [4].

Our hypothesis is that scientific and cyberinfrastructure
software sustainability would benefit from using open
governance methods, which would create more resilient
developer communities. This position is supported by the
statistical analysis of 352 open source projects as reported
in [8]: openly governed projects were significantly more
efficient at what the authors call “enhancive maintenance”
(adding new features, improving performance) but less
efficient at corrective maintenance (bug fixes). We extrap-
olate that enhancive maintenance is vital to software’s
long term viability as it moves the software onto new
platforms, increases its capabilities, and generally keeps
the project moving forward. Similarly, Shah [9] found that
openly governed open source software projects attracted
more engaged contributors who worked for longer peri-
ods of time on the project voluntarily. Openly governed

ISSUES IN RESEARCH SOFTWARE

Patching It Up, Pulling It Forward
Marlon E. Pierce1, Suresh Marru1 and Chris Mattmann2,3

1	 University Information Technology Services, Indiana University, Bloomington, IN 47408
marpierc@iu.edu, smarru@iu.edu

2	 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
chris.a.mattmann@jpl.nasa.gov

3	Department of Computer Science, University of Southern California, Los Angeles, CA 90089

An important reason for making any software open source is to encourage code and other community con-
tributions, resulting in more diverse developer communities coalescing around valuable software efforts. We
believe the full picture of open developer communities is underappreciated by scientific and cyberinfrastructure
open source software efforts. Free and open source licensing is popular in scientific and cyberinfrastructure
software, and Web-based tools for source code management (such as GitHub and Bitbucket) are in common
use, but community building efforts and associated governance models that foster these communities need
improvement. We propose here a simple mechanism to address this problem: developers should be given incen-
tives to submit patches and to make other measurable contributions to code bases that they use but are not
otherwise connected to, and projects should be given incentives to accept these outside contributions. As an
example implementation, we outline a contest system with small monetary rewards for individuals and recog-
nition for both individuals and projects. The goal is to change the mindset of scientific and cyberinfrastruc-
ture developers, converting them from passive downstream users to active contributors. We hypothesize that
this easily measurable concrete action will contribute to the sustainability of many projects and also create
a more flexible scientific workforce. Building this effort on currently available, federally funded software will
establish a foundation of public data that can be used to verify our hypothesis. More broadly, the effort will
demonstrate the benefits for scientific and cyberinfrastructure projects that adopt workable governance
models that are already well established in the broader open source software ecosystem.

Keywords: cyberinfrastructure; open source software; software governance

Pierce, M E et al 2015 Patching It Up, Pulling It Forward. Journal of Open Research
Software, 3: e12, DOI: http://dx.doi.org/10.5334/jors.bz

Journal of
open research software

mailto:marpierc@iu.edu
mailto:smarru@iu.edu
mailto:chris.a.mattmann@jpl.nasa.gov
http://dx.doi.org/10.5334/jors.bz

Pierce et al: Patching It Up, Pulling It ForwardArt. e12, p.  2 of 6

software projects would thus be better able to create and
sustain a pipeline of developers and contributors at all
levels, and individuals would be able to publicly demon-
strate their coding skills and adaptability to the specific
developer cultures of multiple projects. They would also
be properly credited for their work. Thus openly governed
projects are designed to increase the number of constitu-
ent stakeholders. Stakeholders are responsible for making
decisions, developing software, fixing bugs, creating soft-
ware releases, and writing documentation. Greater stake-
holder diversity (that is, not all stakeholders come from
the same organization or are paid to work on the project
by the same funding source) increases the resiliency and
sustainability of the project in the face of uncertain fund-
ing and developer turnover.

In open source software projects, competitors take the
unusual step of agreeing that it is to everyone’s advantage
to work on a common code base, joining forces as stakehold-
ers in a common community with well-defined governance
rules. Famous examples include the Apache HTTPD server,
the Linux operating system, many programming languages
such as Perl, Ruby, and Python, and (more recently) plat-
forms such as Apache Hadoop, Apache Cassandra, Apache
Spark, OpenStack, and others. These projects do not exist
strictly to support science and most are not academic, but
the same open source principles that they use also apply
to academic cyberinfrastructure software supporting scien-
tific research. It is our contention that much of these open
source principles have been inadequately applied or misap-
plied by the academic research community.

Cyberinfrastructure software is developed to support
e-Science research. It is software that supports large scale
distributed computing, scientific computing, and scien-
tific data management. Cyberinfrastructure software is
primarily funded by government agencies to enable scien-
tific research and may also be the subject of computer sci-
ence research itself. “Open” cyberinfrastructure software
is often taken by its would-be practitioners to mean vari-
ous things. The software may have an open source or free
license, but how this is enforced or ensured by the project
is often not clear. The software may be openly available
on the Web through online version repositories such as
GitHub, Bitbucket, SourceForge, and Google Code, where
it can be viewed, branched, and so on, but how one con-
tributes back to the trunk of this open source code and
gets credit may not be clearly defined. Code management
technologies offered by online resources like GitHub may
help, but accepting patches and granting full access to
the code trunk are ultimately human decisions.

The code may even implement open, community stand-
ards, but the value of these standards, in our judgment, is
misunderstood. A common assertion is that open stand-
ards create an environment within cyberinfrastructure
software that avoids “vendor lock-in” because there can
be multiple implementations of the same standard; pre-
sumably a customer of one vendor can chose another
if the customer is dissatisfied. In our experience, this is
not appropriate for cyberinfrastructure software with its
limited developer pools and smaller communities: the
community of available developers would be better off

collaborating on a single reference implementation of
the foundational software and competing with each other
on value-added capabilities built on top of the standards,
as is the practice in open source communities such as
Apache Hadoop wherein vendors such as Cloudera and
Hortonworks innovate on Hadoop’s core and also make
their own distributions.

Our ideal for cyberinfrastructure software is repre-
sented in Figure 1: cyberinfrastructure enabled scientific
research, cyberinfrastructure (e-Science) research itself,
and cyberinfrastructure operations (that is, organizations
that operate cyberinfrastructure on behalf of scientists)
are all mutually supportive and dependent. Open commu-
nity software built by contributions of all three types of
stakeholders is at the core. Since each of the stakeholding
groups has a different mission or goals, different funding
sources, and different members, it is essential that the
software at the center has a defined governance model.

Governance Functions, Stakeholders, and
Implementations
Project members use software governance to make deci-
sions about the project. Example decisions include the fol-
lowing: a) deciding if a new stakeholder should be added;
b) deciding who has write access to the main version of the
code base; c) deciding when to make a software release,
what is in the release, who will be responsible for putting
the release together, and if the released software artifacts
meet the project’s standards for functionality, packaging,
and licensing; d) making major project decisions such as
changing the software’s APIs, adding new features, remov-
ing obsolete features, and significantly revising existing
capabilities and internal components.

We use the term stakeholder to mean anyone involved
in a software community who can participate in the above
governance functions. A stakeholder may be a devel-
oper with write-access to the code trunk, but this is not
required. Stakeholders may also include funders of the
software, important users of the software, champions of
the software, and volunteers who contribute by produc-
ing documentation, tutorials, and outreach material.

Figure 1: Open community software supports scientific
applications, cyberinfrastructure research, and operations.

Pierce et al: Patching It Up, Pulling It Forward Art. e12, p.  3 of 6

Stakeholders interact with each other through the pro-
ject’s governance mechanisms.

Governance can be implemented in a number of ways.
Decisions may be made at specific locations or asyn-
chronously. Deliberations may be open or closed. Issue
resolution can be done by stakeholder vote, although the
weighting of the votes may not be equal. Veto mecha-
nisms may be explicitly defined or implicit in the vot-
ing process (that is, consensus may be a prerequisite).
The Apache Software Foundation provides a well known
example for open governance: project membership is not
limited to a particular organization (technically, all mem-
bers are part of the Apache Software Foundation and act
as autonomous individuals), and all but a few decisions
are made by voting on publicly available, archived mailing
lists; discussions of new candidate project management
committee members and committers are the main excep-
tions, but these discussions are done on archived private
lists. Apache can be viewed as an organization factory that
creates and supports other organizations. After an incu-
bation period, projects that demonstrate that they have
implemented Apache governance mechanisms can gradu-
ate to full project status. Graduation means that the soft-
ware is backed by a “1.0” community, not necessarily that
the software itself is “1.0” quality yet.

We assert that there is a need for the greater adoption
of open governance in scientific cyberinfrastructure soft-
ware projects to make them truly open and accountable.
In summary, open governance is characterized by project
deliberations on open, archived forums. Resolutions are
made through open voting using the same open forums,
with votes carried out asynchronously over a period of
time that allows all stakeholders the chance to express an
opinion and cast a vote. Resolutions may pass with sim-
ple majority, although it is common to seek consensus to
avoid community splintering.

Call to Action
In our view, the litmus test for open governance is the
ability of a project to absorb a software contribution from
a non-member and to properly acknowledge the contribu-
tor. We therefore make the following call to action:

Stop just taking. Stop being passive. Contribute to projects
that you like or depend upon. The best way to contribute is
by submitting patches and pull requests to improve the code
base and fix bugs. So pick your favorite open source project,
find something that needs your help, submit a patch, and
see what happens next.

Governance: Give and Take
We next discuss a possible implementation of this call.
Among our goals is to implement the call in a measur-
able fashion that can be used to substantiate our hypoth-
eses about the value of open governance to scientific and
cyberinfrastructure software.

Open source software lives or dies over the long term
by the number of people who are able to make significant
contributions to the code base. This reverses the usual
give and take relationships between software providers
and their user communities; we must foster the attitudes

of both giving back and accepting within the scientific
and cyberinfrastructure software communities through
code contributions. To accomplish our goal, we call upon
members of these communities to start submitting soft-
ware patches as part of a community-wide experiment.
These contributions must be measurable, requiring both
Web-based source code management tools as well as pub-
lic, archived discussion forums.

The “submit a patch” activity is designed to foster com-
munity growth and a giving mindset in individual devel-
opers, but it is also a way to expose and hopefully correct
flaws in the management and governance of the targeted
software projects. Examples of possible outcomes, both
good and bad, that this activity may expose are summa-
rized in Table 1.

Implementation and Incentives
The call to action by itself is unlikely to convince a criti-
cal quorum of developers to start voluntarily submitting
patches to other projects. It is thus necessary to consider
incentives that will be needed to implement this call to
action. We will assume that only small amount of funding
is available for incentives, so we must use a cost-efficient
strategy.

Scope: This call to action can be implemented by a
national funding agency (such as the National Science
Foundation in the United States) or through a collabo-
ration of funding agencies. Eligible projects would be
those that are at least partially funded by the funding
agency. A specific implementation may choose to target
a smaller subset, such as current award winners of the
National Science Foundation’s Software Infrastructure for
Sustained Innovation (SI2) program.

Prerequisites: For a project to participate, it must have
the following:

•	 An open source or free source license. The source
code must obviously be licensed in a way that allows
contributions.

•	 Publicly available source code in an online source
code management system. Having code in a public
repository enables indexing and analysis tools such as
OpenHub (formerly Ohloh) to measure user contri-
butions. Most public repositories have similar tools.
This will be essential for measuring impact of the pro-
posed effort in the long term.

•	 Public forums for discussion. Our proposed
effort requires a publicly accessible, archived and
searchable forum for contributors to interact with
project developers, submit patches, and discuss
contributions.

Developer Incentives: Although we anticipate that there
will be many long-term benefits to individual developers
(such as publicly demonstrated coding ability and ability
to interact productively with other developers), this will
most likely not be enough incentive to initiate the pro-
ject. We therefore propose launching a series of one-year
contests with recognition at a major community venue
(such as Supercomputing). Awards (plaques, medals,

Pierce et al: Patching It Up, Pulling It ForwardArt. e12, p.  4 of 6

small honoraria) will be given for the following individual
achievements to external developers who

•	 Submits the most patches in released software of par-
ticipating projects.

•	 Contributes to the most participating projects.
•	 Are given trunk write access to the most software

repositories of participating projects.

In all cases, the external developer cannot be paid directly
by the project owners (that is, the owners of the project’s
license or copyright) and does not begin the project with
write access to the code base.

Project Incentives: As with developers, we anticipate
that software projects will have many long-term benefits
from participating in our proposed efforts, but short-term
incentives will be needed to initiate the effort. We propose
that awards of recognition be given to projects for the fol-
lowing achievements.

•	 Most patches by external developers accepted in
released software.

•	 Most external developers contributing patches.
•	 Most new, (formerly) external developers given write

access to the project’s trunk (release) code base.

Again, “external” developers are developers who are not
paid directly to work on the project by the owners of
the project’s license or copyright. Projects will receive
the awards at a prominent community venue (such as
Supercomputing). Projects will not be given monetary
awards, but they may apply for funding to organize devel-
oper workshops. Awards may be categorized according to
the size of a project’s stakeholder community (i.e., small,
medium or large).

Related Work
The authors are practitioners of cyberinfrastructure
research and development, and we base our positions in
this paper on empirical evidence and extended observa-
tions of our own and other software efforts, including
both academic and non-academic projects. This paper is
an extension of two previous white papers [10, 11]. In [10],
we describe our involvement in the Apache Software
Foundation and provide a longer discussion of the appli-
cation of the foundation’s governance mechanisms to
cyberinfrastructure software.

The Computer-Supported Cooperative Work (CSCW)
conference series (most recently, [12]) provides a survey of
the field via direct and rigorous research on open source
and other software development communities. [13] pro-
vides a survey of research into open source and free soft-
ware communities. Our paper looks at targeted incentives
for open source developers that we believe will spur more
transparent cyberinfrastructure project governance, but
general issues with incentives in scientific software are
explored in [14, 15]. From our point of view, [15] describes
anti-patterns resulting from improper governance.

Our proposed incentive model targets individual
developers with monetary awards as well as recognition.
Projects receive only awards of recognition. An alternative
award system that gave monetary awards to projects is
Mellon Awards for Technology Collaboration (http://old.
arl.org/news/pr/mellontechawards06~print.shtml). We
believe that targeting individual developers is more cost
effective and also more likely to provide objective metrics.

Google Summer of Code (GSOC) and OpenHatch are two
activities aimed particularly at students and younger devel-
opers. GSOC pays students a small stipend to work for sev-
eral months with a well-known open source community.
Google selects the projects that can participate and sets

Scenario Outcome

A willing volunteer dives into the project but cannot
see how to get started submitting a patch for anything.

The project is not well documented, is not modularly designed, has a
broken build and test system, is not using issue tracking systems, has
no easy way to communicate with developers directly, etc.

The volunteer creates a patch but then does not know
what to do with it.

The project does not have a way to accept patches (by Jira issue,
through a developer mailing list, etc).

A volunteer submits a patch, but it is ignored. The project does not actually want contributions; the project members
are unaccustomed to receiving a patch and do not know what they
should do with it; the developers decide to appropriate the patch ideas
for themselves and not share credit (hopefully a rare outcome); the
project is no longer active, so no one receives the patch.

The patch is discussed but never applied. The patch may be deemed unacceptable after public discussion and
iterations with the contributor; the project may not have (or think they
have) resources to apply the patch; the project may not want the patch.

The patch is applied but the volunteer later doesn’t feel
properly credited.

The project may not have thought through intellectual property and
copyright issues.

The patch is applied (typically after some iterations)
and incorporated into the release.

The project is a mature open source project with open governance.

The contributor submits several more patches and is
eventually given write access to the main code base and
the ability to participate in major project decisions.

The project has a governance model that it uses to make these
decisions.

Table 1: Possible outcomes from patch submissions and pull requests that reflect the health of project governance.

http://old.arl.org/news/pr/mellontechawards06~print.shtml
http://old.arl.org/news/pr/mellontechawards06~print.shtml

Pierce et al: Patching It Up, Pulling It Forward Art. e12, p.  5 of 6

a barrier that may be too high for many of the scientific
and cyberinfrastructure projects that we consider. GSOC
splits the stipend over three payments, giving students an
initial payment but reserving the final two payments for
mid-term and final evaluations. In our proposed model,
the barrier for projects to participate would be much lower
(meeting the requirements described above would be suffi-
cient, similar to the requirements for projects to participate
in OpenHatch), and the number of awards would be much
lower. We don’t anticipate that developers would earn a
living primarily through the contest. The awards are pro-
vided mainly as a recognition for outstanding achievement.
To our knowledge, there is no full scale academic study of
GSOC, although [16] examines its impact on one project.

Conclusion: Measuring Long-Term Impact
Our working hypothesis is that encouraging more out-
side contributions will benefit both scientific software
projects and individual developers and scientists. Projects
will potentially become better organized and more trans-
parently governed in order to accept code contributions
and grow to include a broader stakeholder base. This will
contribute to better sustainability in a number of ways:
new project staff members can be recruited and carefully
vetted over a longer process, and the project will be more
resilient to the loss of key individuals. Individual develop-
ers and scientists will likewise benefit from the proposed
effort by publicly demonstrating their coding abilities,
their ability to translate between science and software,
and their interpersonal and communication skills. This
may serve to keep more people interested in academic
software projects. A young developer can, for example,
increase his or her publicly demonstrable skills and repu-
tation while remaining in scientific or cyberinfrastructure
software development. This may lead to better and more
secure employment both within and outside academia.

These are subjective conclusions that need to be more
carefully measured over a number of years. The award-
based incentive program that we have outlined can be
undertaken for low-cost for a number of years by an inter-
ested funding agency. The result will be measurable data
that can be used to test our hypothesis.

Competing Interests
The authors declare that they have no competing interests.

References
  1.	Stewart, C A, Guy, T A and Bradley, C W 2010 Cyber-

infrastructure Software Sustainability and Reusability:
Report from an NSF-funded workshop.

  2.	Raymond, E 1999 The cathedral and the bazaar.
Knowledge, Technology & Policy, 12(3): 23–49. DOI:
http://dx.doi.org/10.1007/s12130-999-1026-0

  3.	Ljungberg, J 2000 Open source movements as a model
for organising. European Journal of Information Systems,
9(4): 208–216. DOI: http://dx.doi.org/10.1057/palgrave.
ejis.3000373

  4.	O’Mahony, S 2007 The governance of open source
initiatives: what does it mean to be community man-
aged? Journal of Management & Governance, 11(2):
139–150. DOI: http://dx.doi.org/10.1007/s10997-
007-9024-7

  5.	How the ASF Works? Avavilable at: http://www.
apache.org/foundation/how-it-works.html.

  6.	Fielding, R T 1999 Shared leadership in the Apache
project. Communications of the ACM, 42.4: 42–43.
DOI: http://dx.doi.org/10.1145/299157.299167

  7.	Markus, M L 2007 The governance of free/open
source software projects: monolithic, multidimen-
sional, or configurational? Journal of Management &
Governance, 11(2): 151–163. DOI: http://dx.doi.org/
10.1007/s10997-007-9021-x

  8.	Midha, V and Bhattacherjee, A 2012 Governance
practices and software maintenance: A study of
open source projects. Decision Support Systems,
54(1): 23–32. DOI: http://dx.doi.org/10.1016/j.dss.
2012.03.002

  9.	Shah, S K 2006 Motivation, governance, and the vi-
ability of hybrid forms in open source software de-
velopment. Management Science, 52(7): 1000–1014.
DOI: http://dx.doi.org/10.1287/mnsc.1060.0553

10.	Pierce, M, Suresh, M and Mattmann, C 2013 Sus-
tainable Cyberinfrastructure Software Through Open
Governance. figshare. DOI: http://dx.doi.org/10.6084/
m9.figshare.790761. Retrieved 19:01, Jul 18, 2014
(GMT).

11.	Pierce, M, Suresh, M and Mattmann, C 2014
WSSSPE2: Patching It Up, Pulling It Forward. figshare.
DOI: http://dx.doi.org/10.6084/m9.figshare.1112540.
Retrieved 19:49, Mar 06, 2015 (GMT).

12.	Pierce, M, Suresh, M and Mattmann, C 2014 Pro-
ceedings of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing.
ACM, New York, NY, USA.

13.	Crowston, K, Wei, K, Howison, J and Wiggins, A
2012 Free/Libre open-source software development:
What we know and what we do not know. ACM Com-
puting Surveys (CSUR), 44(2). DOI: http://dx.doi.
org/10.1145/2089125.2089127

14.	Howison, J and James, D H 2011 Scientific software
production: incentives and collaboration. In Proceed-
ings of the ACM 2011 conference on Computer sup-
ported cooperative work. ACM, pp. 513–522. DOI:
http://dx.doi.org/10.1145/1958824.1958904

15.	Howison, J and James, D H 2013 Incentives and inte-
gration in scientific software production. In Proceed-
ings of the 2013 conference on Computer supported
cooperative work. ACM, pp. 459–470. DOI: http://
dx.doi.org/10.1145/2441776.2441828

16.	Trainer, E H, Chaihirunkarn, C and James, D H 2014
The Big Effects of Short-term Efforts: Mentorship and
Code Integration in Open Source Scientific Software.
Journal of Open Research Software, 2(1): e18. DOI:
http://dx.doi.org/10.5334/jors.bc

http://dx.doi.org/10.1007/s12130-999-1026-0
http://dx.doi.org/10.1057/palgrave.ejis.3000373
http://dx.doi.org/10.1057/palgrave.ejis.3000373
http://dx.doi.org/10.1007/s10997-007-9024-7
http://dx.doi.org/10.1007/s10997-007-9024-7
http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/how-it-works.html
http://dx.doi.org/10.1145/299157.299167
http://dx.doi.org/10.1007/s10997-007-9021-x
http://dx.doi.org/10.1007/s10997-007-9021-x
http://dx.doi.org/10.1016/j.dss.2012.03.002
http://dx.doi.org/10.1016/j.dss.2012.03.002
http://dx.doi.org/10.1287/mnsc.1060.0553
http://dx.doi.org/10.6084/m9.figshare.790761
http://dx.doi.org/10.6084/m9.figshare.790761
http://dx.doi.org/10.6084/m9.figshare.1112540
http://dx.doi.org/10.1145/2089125.2089127
http://dx.doi.org/10.1145/2089125.2089127
http://dx.doi.org/10.1145/1958824.1958904
http://dx.doi.org/10.1145/2441776.2441828
http://dx.doi.org/10.1145/2441776.2441828
http://dx.doi.org/10.5334/jors.bc

Pierce et al: Patching It Up, Pulling It ForwardArt. e12, p.  6 of 6

How to cite this article: Pierce, M E, Marru, S and Mattmann, C 2015 Patching It Up, Pulling It Forward. Journal of Open
Research Software 3: e12, DOI: http://dx.doi.org/10.5334/jors.bz

Published: 19 November 2015

Copyright: © 2015 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://dx.doi.org/10.5334/jors.bz
http://creativecommons.org/licenses/by/3.0/

	h.8lblzjkf17p
	h.wqmu8sr3yp5c
	h.e5kznn6p2ls4
	h.dmf0wehxoz0k
	h.bxylvkge3n1
	h.5lh3or92mthz
	h.h2xcd99v0o4l
	h.wsncwjdxoxiv

