
(1) Overview
Introduction
Spectroscopy, the study of the interaction of light and 
matter, is utilized as an experimental technique in chem-
istry (IR/Raman), physics (NMR/Xray), biology and nano-
technology (UVVis/circular dichroism), and many other 
scientific fields. Despite widespread interest, spectros-
copy software development is not often a research focus; 
researchers traditionally rely on commercial software bun-
dled with instrumentation, such as a benchtop spectrom-
eter, or a Raman microscope. Such software is expensive 
and usually tailored to a particular research domain or 
application. Open-source solutions are less abundant, and 
also tend to be specialized.

Python has emerged as a swiss-army knife for scientific 
research, due in large part to a core group of scientific 
libraries known as SciPy[1], perhaps the most prominent 
of which are NumPy[2], Pandas[3] and IPython[4]. To 
integrate with the SciPy ecosystem, new libraries must 
be NumPy-compatible. For example, the scikit-image1[5] 
library stores images as pure NumPy arrays, while Pandas’ 
primary datastructures are directly subclassed from 
NumPy arrays. In regard to spectroscopy in Python, a 
handful of domain-specific, SciPy-compatible libraries 
are available; for example, NMRGlue[6] and PySpecKit[7] 
are great resources for nuclear magnetic resonance and 
astronomy applications, respectively. 

Interoperability between Python’s spectroscopy librar-
ies is challenging, even when they are NumPy-compatible. 
The primary difficulty arises in storing metadata. 
Spectral data is tabular: a matrix of n spectra measured 

at m timepoints, or more generally, m variational points, 
with labeled rows (e.g. wavelength) and columns (e.g. 
time). Most would recognize this datastructure in an Excel 
Spreadsheet. Fortunately, tabular data is already well- 
supported in Python by the widely-used Pandas library. 
Pandas provides an intuitive, NumPy-friendly API for 
IO, plotting, statistical analysis and data manipulation. 
Unfortunately, it’s not straightforward to simply repur-
pose Pandas for spectroscopy, since Pandas datastructures 
don’t preserve arbitrary metadata, nor do they support 
conventional Python subclassing. Such obstacles reduce 
Pandas’ applicability to spectral analysis.

Herein, scikit-spectra is presented, a Python library that 
provides generalized datastructures and APIs for explora-
tive2 spectroscop. Scikit-spectra overcomes the aforemen-
tioned Pandas metadata and subclassing obstacles to 
provide spectroscopy datastructures that behave identi-
cally to Pandas objects, leading to a much more intuitive 
framework for IO, manipulation and plotting of spectral 
data. The ways that scikit-spectra extends Pandas to suit 
the needs of spectroscopists include:

1.	�Nearest-neighbor slicing to index data based on an 
approximate range of values.

2.	�2D and 3D contour, waterfall, auto-correlation, and 
other spectral plots seamlessly integrated into pan-
das’ pre-existing plotting API.

3.	�Unit-aware indexing objects for easy unit conversions 
and integration with the plotting API.

4.	�IPython Notebook graphical user interfaces (GUIs) 
to expedite many common tasks such as resampling, 
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normalization, and plotting without ever leaving the 
notebook environment. 

5.	�Spectra and Spectrum classes to replace the Pan-
das DataFrame and Series, respectively. These objects 
retain all of the functionality of their Pandas coun-
terparts, and add capabilities such as persistence 
of metadata, the notion of baseline and reference 
spectra, and reversible spectral normalization: for 
example converting raw data into a transmission(T), 
percent transmission(%T), or absorbance(A) spectra.

Implementation and architecture
Scikit-spectra’s core datastructures are the Spectrum and 
Spectra, which behave as if they were directly subclassed 
from the Pandas Series and DataFrame, respectively. 
Spectrum and Spectra are actually composite classes: pure 
Python classes that store both a Pandas object and meta-
data attributes; however, to the end user, operate identi-
cally to Pandas objects. In the future, scikit-spectra may be 
refactored to truly subclass from Pandas objects, as librar-
ies like GeoPandas[8] and Xray[9] have recently shown 
how to do this properly.

In addition, scikit-spectra provides a SpecStack class for 
operating on multiple Spectra, analogous to the Pandas 
Panel class. SpecStack provides basic functionality for 
operations on multiple datasets, but does not try to emu-
late the API of the Panel.

Scikit-spectra defines custom Pandas Index objects, such 
as the SpecIndex, TimeIndex and TempIndex to sup-
port common spectral labels. For example, a TimeIndex 
supports timestamped labels and can convert to interval 
representations, (e.g. seconds elapsed), and the SpecIndex 
can transform spectral units, for example nanometers to 
inverse centimeters to electron volts. Arbitrary unit sys-
tems can also be defined through the Unit class. For exam-
ple, a custom unit to denote polarization would be defined 
as follows: 

from skspec.units import Unit

polarization = Unit(
		  short = 'polar',
		  full = 'Polarization',
		  symbol = r'$\theta$', # Latex optional
		  )

The short, full and symbol attributes ensure new units 
will automatically interface to the indexing and plotting 
systems.

Scikit-spectra includes graphical applications developed 
fully with IPython’s widget API, and is one of the first librar-
ies to do so. The documentation is built with Sphinx[10], 
using the Bootstrap theme[11], and sphinx gallery exten-
sions[12]; and is heavily inspired by the scikit-image and 
scikit-learn[13] docs. 

Examples of use3

To illustrate some basic functionality of scikit-spectra, 
data are analyzed from a system of gold nanoparticles 
(AuNPs) in a cuvette of water before and after protein has 
been added to the solution. Binding between the protein 
and the nanoparticles yields a characteristic shift towards 
long wavelengths in the absorbance spectrum of the gold, 
known as the localized surface plasmon resonance[14,15]. 
For brevity, a bundled dataset, aunps_water(), is used; 
however, reading data from a CSV file is quite easy, as scikit-
spectra wraps Pandas’ powerful read_csv() parser.

from skspec.data import aunps_water

ts = aunps_water()
ts.iloc[0:5, 0:5]

The iloc indexer was used to display only the first five 
rows and columns, as seen in Table 1. If working in the 
IPython Notebook, Spectrum and Spectra objects will 
automatically render as HTML tables, with metadata 
attributes such as name, units, shape, baseline; and refer-
ence and normalization states, shown in the header. The 
ability to store arbitrary metadata is crucial to repurpos-
ing Pandas for specific applications.

In this dataset, the baseline comes preset, but is not 
subtracted. The dataset (baseline and reference spectra 
are plotted as dashed lines for clarity) is shown in Fig. 1.
ts.reference = 0
ts.varunit = 's'
ax = ts.plot()
ts.baseline.T.plot(color='k', ls='--', ax=ax)
ts.reference.T.plot(color='magenta', ls = '--',
ax=ax);

Spectral data in their raw form are typically not very 
useful; it is better to work with the absorbance spectrum, 
which is defined by the transformation:

Gold Nanoparticles in Water (5 X 5)    [timestamp X nanometers]    lunit: Counts (photons)

Baseline: Found (no sub)    Reference: Found    Normalization: None

2013-02-04 
15:40:48

2013-02-04 
15:41:34

2013-02-04 
15:42:20

2013-02-04 
15:43:06

2013-02-04 
15:43:52

200 305.53 306.31 305.23 305.17 307.22

201 311.67 313.43 312.75 314.12 314.88

202 318.09 319.56 319.12 319.51 319.13

203 323.47 324.90 322.34 324.48 325.61

204 340.97 340.09 340.86 342.99 341.78

Table 1: HTML output of first five rows and columns of gold nanoparticles in water. This built-in dataset is preset with 
a stored baseline and reference spectra, and has column labels of timestamps. 
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where An(λ) is the absorbance of the nth curve, Sn(λ) is 
the spectrum, Rn(λ) is the reference spectrum, and Bn(λ) 
is the baseline. The absorbance data tend to be very noisy 
in the short wavelength region, due to the small signal in 
the raw data, so the usual procedure is to crop the values 
between 400–700nm. The nearby() method invokes 
nearest-neighbor slicing to index over an approximate 
range; for example, nearby[400:700] will automati-
cally find and slice between the closest spectral index val-
ues, in this case 400.36–699.58nm. 
from skspec.data import aunps_water

ts.sub_base() # subtract baseline inplace
ts.norm = 'a' # absorbance
ts = ts.nearby[400:700]
ts.plot(cbar=True)

The curves in Fig. 2 show the surface plasmon reso-
nance around 525nm and its clear shift to the right after 
proteins are added.

The plasmon resonance refers to the wavelength at 
which the nanoparticles maximally absorb, An(λmax). Prior 
to analysis, the first few curves must be eliminated. These 
correspond to the timepoints taken prior to the addition 
of nanoparticles to the cuvette; that is, An(λmax) = 0. This is 
most easily done through boolean masking, which nicely 
exemplifies the notion of NumPy-compatibility .

The blue curves in Fig. 2 correspond to timeseries taken 
before the addition of nanoparticles. To remove these and 
retain only the subset of curves with significant absorb-
ance, a mask is defined with a lower threshold of 0.10 
absorbance units.
mask = ts.max() > 0.10
ts_cut = ts[ts.columns[mask]] #Index by the mask

The new TimeSpectra, ts_cut, retains only curves after 
the addition of AuNPs, the timepoint when the absorb-
ance maximum rises above the threshold value.

Next, the plasmon resonance shift vs. time is analyzed. 
Pandas already has a method that returns the index 

corresponding to the maximum value for every curve in 
the dataset: idxmax(). Since scikit-spectra objects inherit 
all Pandas methods, idxmax() is also a TimeSpectra 
method.
ts_cut.idxmax().plot(title='SPR shift vs. time')
plt.ylabel('Peak Wavelength (nm)')

The method, ts_cut.idxmax(), returns a 
Spectrum class whose plot() method is then called. 
The result, shown in Fig. 3, indicates that the plasmon 
resonance hovers between 524–525nm, then shifts 
about 4 nm to 528–529nm. The jagged nature of the 
trend merely reflects the 1nm resolution of our bench-
top spectrometer. 

Most of the analysis so far could have been performed in 
one of scikit-spectra’s Notebook GUIs. At any point in the 
workflow, one could have opened the GUI, manipulated 
the data, exported it back into the Notebook namespace, 
and resumed working through the API, exemplifying the 
philosophy of the GUI when you want it, the API when you 
need it. The code needed to run the GUI and a screenshot 

Fig. 2: Absorbance of AuNPs increases after the addi-
tion of bovine serum albumin protein, due to binding  
between the protein and gold surface. The amount of 
protein bound to the surface is related to the size of the 
shift in peak position.

Fig. 3: Absorbance spectra maximum vs. time shows the 
movement of the plasmon resonance position after pro-
tein binds to the AuNPs. 

Fig. 1: Gold nanoparticles in water visualized: the data is 
stored in a TimeSpectra class. Baseline and reference are 
overlaid as dashed lines in black and magenta, respec-
tively. Reference is user-selected, in this case set to the 
first curve in the dataset.
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of the result are shown below in Fig. 4. The GUI sup-
ports nine plot types, as well as interactive plots through 
mpld3[16]. A video tutorial of the GUI is available on the 
scikit-spectra website[17].
from skspec.interact import SpectraModel,
SpectraGui

specmodel = SpectraModel(spec=aunps)  # �Traitlets 
													               model
gui = SpectraGui(model=specmodel)	     # GUI
gui.tight_layout()
gui

Scikit-spectra provides a natural framework for general-
ized spectroscopy applications, such as two-dimensional 
correlation spectroscopy(2DCS)[18], factor analysis[19] 
and chemometrics[20]. An API for 2DCS has been imple-
mented, with the intention of turning scikit-spectra into 
the de-facto toolkit for correlation spectroscopy. While 
there are a few graphical applications for 2DCS, like 
2dShiege[21] and MIDAS[22] in MATLABTM, there is no 
corresponding API-level toolkit available. To demonstrate 
scikit-spectra’s 2DCS API, the asynchronous4 correlation 
spectrum[23] of the AuNPs dataset will be analyzed.

Asynchronicity, Ψ(λ,λ), measures the spectral distri-
bution of uncorrelated events over a time5 interval. For 
example, if a peak at λ=a forms early in an experiment, 
and then later a second peak at λ=b appears, then there is 
asynchronicity at Ψ(a,b) because these events occurred at 
different times: they are uncorrelated and likely due to dif-
ferent underlying processes in the system. If the peaks had 

formed at the same time, then they would be regarded as 
highly synchronous. Together, synchronicity and asynchro-
nicity encompass all of the variance in the dataset. 2DCS 
applications are discussed much more extensively in the 
scikit-spectra documentation. For datasets with many 
spectral peaks, 2DCS can often resolve otherwise intrac-
table information about the order and nature of events in 
the system.
from skspec.correlation import Corr2d

cspec = Corr2d(ts.nearby[:600])
cspec.async.plot(contours=128, cbar=True) 

Fig. 5 illustrates the asynchronicity at wavelengths 
ranging from 200 to 600nm in the absorbance spectra. 
The time-span, spectral unit, spectral symbol and other 
metadata appear in the default plot labels, demonstrating 
the connectedness of scikit-spectra’s units and plotting 
APIs. Strong cross-peaks between the ultraviolet and the 
plasmon resonance regions indicate that at some point 
in the experiment these peaks change asynchronously. 
This is verified by looking back at the data and observing 
that the initial protein binding leaves the nanoparticles 
saturated, with no binding-sites for a second addition of 
proteins. However, the additional protein does increase 
the absorbance in UV region. In other words, adding pro-
tein late in the experiment increases short-wavelength 
absorption, but has no effect on the plasmon resonance 
shift, resulting in asynchronicity between the 250nm and 
530nm regions. 

Fig. 4: IPython Notebook GUI for plotting, slicing, resampling, changing units and IO.
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Quality control
Scikit-spectra includes a preliminary nose[24] test frame-
work, inspired by the excellent Pandas test suite. A collec-
tion of tutorials and website examples are batch-run to catch 
breaking-changes that are not covered by the nose tests.

(2) Availability
Operating system
Scikit-spectra has been tested on Ubuntu 10.04, 12.04, 
13.10; Mac OS 10.8, and Windows 7.

Programming language
Python 2.7

Dependencies

For core functionality
Pandas v0.14, SciPy, NumPy, matplotlib

For full functionality
IPython v2.0 or higher, mpld3, Traits

List of contributers
Adam Hughes, Zhaowen Liu

Software location
Archive

Name
scikit-spectra

Identifier
DOI 10.5281/zenodo.13965

Licence
BSD 3-Clause License

Publisher
Zenodo

Date published
1/15/15

Code repository
Name
Github

Identifier
https://github.com/hugadams/scikit-spectra

Licence
BSD 3-Clause License

Current version
0.3.2

Date published
Fall 2012 (formerly “pyuvvis”)

Documentation
Url
hugadams.github.io/scikit-spectra/

Mailing list
scikit-spectra.39571.n7.nabble.com

(3) Reuse potential
Scikit-spectra is built for generalized applications, and 
built on the already successfully Pandas library. Scikit-
spectra’s core design is adaptable to many branches of 
spectroscopy, such as NMR, IR and Raman. Ideally, each 
branch will eventually be supported as a distinct subset 
of scikit-spectra, built on the same core framework. This 
is a long-term goal and will require contributions from 
many scientists and developers. The vision for scikit-
spectra is to adapt and interface with other spectroscopy 
libraries, not supplant them. Unifying Python’s spec-
troscopy libraries, whether or not it ultimately involves 
scikit-spectra, is critical to bringing open-source solu-
tions to the research community, much in the same 
way that ImageJ[25] has brought open-source image 
processing into the mainstream. Interested developers 
are welcome to contact the authors with suggestions 
or ideas.
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the mean-centered average spectrum from the full set.
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Notes
1 � Scikit stands for SciPy Toolkit, which are SciPy-based  

libraries deemed too specialized to live in the core SciPy 
distribution.

2 � The term “explorative” refers to an API compatible 
with SciPy libraries to streamline customized analysis 
visualization.

3 � These examples are available in a single notebook at: 
http://nbviewer.ipython.org/github/hugadams/scikit-
spectra/blob/master/examples/Notebooks/grad_
presentation.ipynb

4 � The synchronous and asynchronous correlation spectra are 
fundamental to 2DCS.  Some important new developments 
include generalized scaling of correlation spectra[X] and 
the derivation of the so-called codistribution spectra[X], 
both of which are built into scikit-spectra’s 2DCS API.

5 � 2DCS is also applicable to non-temporal datasets, for 
example spectra changing as a function of pressure, 
temperature or any other “perturbation variable”.

References
  1.	Bohren, H 1983 Absorption and Scattering of Light by 

Small Particles, John Wiley & Sons, INC.
  2.	Ginsburg, A and Mirocha, J 2011 ‘PySpecKit: Python 

Spectroscopic Toolkit’, Astrophysics Source Code  
Library, record ascl:1109.001 URL: http://adsabs.
harvard.edu/abs/2011ascl.soft09001G

  3.	Gorsuch, R L 1983 Factor Analysis, 2nd edn, Lawrence 
Erlbaum Associats, Inc., Hillsdale, NJ.

  4.	Helmus, J and Jaroniec, C 2013 ‘Nmrglue: An open 
source Python package for the analysis of multidi-
mensional NMR data’, Journal of Biomolecular NMR 
55(4), 355–367. URL: http://link.springer.com/arti-
cle/10.1007/s10858-013-9718-x

  5.	Hoyer, S 2015 ‘xray: N-D labeled arrays and datasets in 
Python’. URL: https://github.com/xray/xray

  6.	Hughes, A and Liu, Z 2014 ‘scikit-spectra: Tools for 
explorative spectroscopy’. URL: http://hugadams.
github.io/scikit-spectra/

  7.	Jones, E, Oliphant, T and Peterson, P 2001 ‘Scipy: 
Open source scientific tools for Python’. URL: http://
www.scipy.org

  8.	Jordahl, K 2014 ‘GeoPandas: Python tools for geo-
graphic data’. URL: https://github.com/geopandas/
geopandas

  9.	McKinney, W 2010 Data Structures for Statistical 
Computing in Python, in S. van der Walt & J. Millman, 
eds, ‘Proceedings of the 9th Python in Science Confer-
ence’, pp. 51–56. URL: http://pandas.pydata.org/

10.	Morita, S 2002 ‘2D Shige’. URL: https://sites.google.
com/site/shigemorita/home/2dshige

11.	Nájera, O 2014 ‘Sphinx-Gallery’. URL: https://github.
com/sphinx-gallery/sphinx-gallery

12.	Noda, I 2007 ‘Scaling techniques to enhance two-
dimensional correlation spectra’, Journal of Molecular 
Structure 883–884, 216–227. URL: http://linkinghub.
elsevier.com/retrieve/pii/S0022286007008411

13.	Noda, I and Ozaki, Y 2004 Two-Dimensional Correla-
tion Spectroscopy, Wiley.

14.	Normand, E 2011 MIDAS 2010: Mid-Infrared Data 
Analysis Software 2010 A Matlab Package for 2D IR 
Spec-troscopy Analysis. URL: http://www.mathworks.
com/matlabcentral/fileexchange/32384-midas-2010

15.	Oliphant, T E 2007 ‘Python for Scientific Computing’, 
Computing in Science & Engineering 9(90), 2007. URL: 
http://www.numpy.org/

16.	Pedregosa, F et. al. 2011 ‘Scikit-learn: Machine Learn-
ing in Python’, Journal of Machine Learning Research 
12, 2825–2830. URL: http://scikit-learn.org/stable/

17.	Pellerin, J 2009 ‘nose’. URL: https://nose.readthedocs.
org/en/latest/

18.	Perez, F and Granger, B 2007 ‘IPython: a Stystem for 
Interactive Scientific Computing’, Computing in Sci-
ence and Engineering 9(3), 21–29.

19.	Roemer, R 2014 ‘Sphinx Bootstrap Theme’. URL: http://
ryan-roemer.github.io/sphinx-bootstrap-theme/

20.	Schneider, C A, Rasband, W S, and Eliceiri, K 2012 
‘NIH Image to ImageJ: 25 years of image analysis’,  
Nature Methods: Focus on Bioimage Informatics 9(7), 
671–675. URL: http://www.nature.com/nmeth/
journal/v9/n7/full/nmeth.2089.html

21.	Sphinx: Python Documentation Generator 2014 
URL: http://sphinx-doc.org/index.html

22.	Vanderplas, J 2014 ‘mpld3: Brining Matplotlib to the 
Browser’. URL: http://mpld3.github.io/

23.	van der Walt, S, Nunez-Iglesias, J, Boulogne, F, 
Warner, J and Al, E 2014 ‘scikit-image: image pro-
cessing in Python’, PeerJ (453). URL: http://scikit-
image.org/

24.	Willets, K A and Van Duyne, R P 2007 ‘Localized  
surface plasmon resonance spectroscopy and 
sensing.’, Annual review of physical chemistry 
58, 267–97. URL: http://www.ncbi.nlm.nih.gov/
pubmed/17067281

25.	Wu, Y, Tsenkova, R and Ozaki, Y 2000 ‘Methods, 
Chemometrics, and Two - Dimensional Correlation 
Spectroscopy in the Analysis of Near - Infrared’, 
54(7).

How to cite this article: Hughes, A, Liu, Z and Reeves, M E 2015 Scikit-spectra: Explorative Spectroscopy in Python. 
Journal of Open Research Software 3:e6, DOI: http://dx.doi.org/10.5334/jors.bs

Published: 05 June 2015

Copyright: © 2015 The Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by 
Ubiquity Press OPEN ACCESS

http://link.springer.com/article/10.1007/s10858-013-9718-x
http://link.springer.com/article/10.1007/s10858-013-9718-x
https://github.com/xray/xray
http://hugadams.github.io/scikit-spectra/
http://hugadams.github.io/scikit-spectra/
http://www.scipy.org/
http://www.scipy.org/
https://github.com/geopandas/geopandas
https://github.com/geopandas/geopandas
http://pandas.pydata.org/
https://sites.google.com/site/shigemorita/home/2dshige
https://sites.google.com/site/shigemorita/home/2dshige
https://github.com/sphinx-gallery/sphinx-gallery
https://github.com/sphinx-gallery/sphinx-gallery
http://linkinghub.elsevier.com/retrieve/pii/S0022286007008411
http://linkinghub.elsevier.com/retrieve/pii/S0022286007008411
http://www.mathworks.com/matlabcentral/fileexchange/32384-midas-2010
http://www.mathworks.com/matlabcentral/fileexchange/32384-midas-2010
http://scikit-learn.org/stable/
http://ryan-roemer.github.io/sphinx-bootstrap-theme/
http://ryan-roemer.github.io/sphinx-bootstrap-theme/
http://sphinx-doc.org/index.html
http://mpld3.github.io/
http://www.ncbi.nlm.nih.gov/pubmed/17067281
http://www.ncbi.nlm.nih.gov/pubmed/17067281
http://dx.doi.org/10.5334/jors.bs
http://creativecommons.org/licenses/by/3.0/

	_GoBack

