
(1) Overview
Introduction
Spectroscopy, the study of the interaction of light and
matter, is utilized as an experimental technique in chem-
istry (IR/Raman), physics (NMR/Xray), biology and nano-
technology (UVVis/circular dichroism), and many other
scientific fields. Despite widespread interest, spectros-
copy software development is not often a research focus;
researchers traditionally rely on commercial software bun-
dled with instrumentation, such as a benchtop spectrom-
eter, or a Raman microscope. Such software is expensive
and usually tailored to a particular research domain or
application. Open-source solutions are less abundant, and
also tend to be specialized.

Python has emerged as a swiss-army knife for scientific
research, due in large part to a core group of scientific
libraries known as SciPy[1], perhaps the most prominent
of which are NumPy[2], Pandas[3] and IPython[4]. To
integrate with the SciPy ecosystem, new libraries must
be NumPy-compatible. For example, the scikit-image1[5]
library stores images as pure NumPy arrays, while Pandas’
primary datastructures are directly subclassed from
NumPy arrays. In regard to spectroscopy in Python, a
handful of domain-specific, SciPy-compatible libraries
are available; for example, NMRGlue[6] and PySpecKit[7]
are great resources for nuclear magnetic resonance and
astronomy applications, respectively.

Interoperability between Python’s spectroscopy librar-
ies is challenging, even when they are NumPy-compatible.
The primary difficulty arises in storing metadata.
Spectral data is tabular: a matrix of n spectra measured

at m timepoints, or more generally, m variational points,
with labeled rows (e.g. wavelength) and columns (e.g.
time). Most would recognize this datastructure in an Excel
Spreadsheet. Fortunately, tabular data is already well-
supported in Python by the widely-used Pandas library.
Pandas provides an intuitive, NumPy-friendly API for
IO, plotting, statistical analysis and data manipulation.
Unfortunately, it’s not straightforward to simply repur-
pose Pandas for spectroscopy, since Pandas datastructures
don’t preserve arbitrary metadata, nor do they support
conventional Python subclassing. Such obstacles reduce
Pandas’ applicability to spectral analysis.

Herein, scikit-spectra is presented, a Python library that
provides generalized datastructures and APIs for explora-
tive2 spectroscop. Scikit-spectra overcomes the aforemen-
tioned Pandas metadata and subclassing obstacles to
provide spectroscopy datastructures that behave identi-
cally to Pandas objects, leading to a much more intuitive
framework for IO, manipulation and plotting of spectral
data. The ways that scikit-spectra extends Pandas to suit
the needs of spectroscopists include:

1.	�Nearest-neighbor slicing to index data based on an
approximate range of values.

2.	�2D and 3D contour, waterfall, auto-correlation, and
other spectral plots seamlessly integrated into pan-
das’ pre-existing plotting API.

3.	�Unit-aware indexing objects for easy unit conversions
and integration with the plotting API.

4.	�IPython Notebook graphical user interfaces (GUIs)
to expedite many common tasks such as resampling,

SOFTWARE METAPAPER

Scikit-spectra: Explorative Spectroscopy in Python
Adam Hughes1, Zhaowen Liu1 and M. E. Reeves1

1	 Dept. of Physics, The George Washington University, USA
hugadams@gwmail.gwu.edu, evelynzwliu@gmail.com, reevesme@gwu.edu

Scikit-spectra is an intuitive framework for explorative spectroscopy in Python. Scikit-spectra leverages
the Pandas library for powerful data processing to provide datastructures and an API designed for spec-
troscopy. Utilizing the new IPython Notebook widget system, scikit-spectra is headed towards a GUI when
you want it, API when you need it approach to spectral analysis. As an application, analysis is presented
of the surface-plasmon resonance shift in a solution of gold nanoparticles induced by proteins binding to
the gold’s surface. Please refer to the scikit-spectra website for full documentation and support: http://
hugadams.github.io/scikit-spectra/

Keywords: correlation spectroscopy; GUI; Python; IPython; Pandas; SciPy; scikits; spectroscopy;
timeseries
Funding statement: Supported in part by the George Gamow Research Fellowship, Luther Rice Collabo-
rative Research fellowship programs, the George Washington University (GWU) Knox fellowship and the
GWU Presidential Merit Fellowship.

Hughes, A et al 2015 Scikit-spectra: Explorative Spectroscopy in Python. Journal
of Open Research Software, 3: e6, DOI: http://dx.doi.org/10.5334/jors.bs

Journal of
open research software

mailto:hugadams@gwmail.gwu.edu
mailto:evelynzwliu@gmail.com
mailto:reevesme@gwu.edu
http://hugadams.github.io/scikit-spectra/
http://hugadams.github.io/scikit-spectra/
http://dx.doi.org/10.5334/jors.bs

Hughes et al: Scikit-spectraArt. e6, p.  2 of 6

normalization, and plotting without ever leaving the
notebook environment.

5.	�Spectra and Spectrum classes to replace the Pan-
das DataFrame and Series, respectively. These objects
retain all of the functionality of their Pandas coun-
terparts, and add capabilities such as persistence
of metadata, the notion of baseline and reference
spectra, and reversible spectral normalization: for
example converting raw data into a transmission(T),
percent transmission(%T), or absorbance(A) spectra.

Implementation and architecture
Scikit-spectra’s core datastructures are the Spectrum and
Spectra, which behave as if they were directly subclassed
from the Pandas Series and DataFrame, respectively.
Spectrum and Spectra are actually composite classes: pure
Python classes that store both a Pandas object and meta-
data attributes; however, to the end user, operate identi-
cally to Pandas objects. In the future, scikit-spectra may be
refactored to truly subclass from Pandas objects, as librar-
ies like GeoPandas[8] and Xray[9] have recently shown
how to do this properly.

In addition, scikit-spectra provides a SpecStack class for
operating on multiple Spectra, analogous to the Pandas
Panel class. SpecStack provides basic functionality for
operations on multiple datasets, but does not try to emu-
late the API of the Panel.

Scikit-spectra defines custom Pandas Index objects, such
as the SpecIndex, TimeIndex and TempIndex to sup-
port common spectral labels. For example, a TimeIndex
supports timestamped labels and can convert to interval
representations, (e.g. seconds elapsed), and the SpecIndex
can transform spectral units, for example nanometers to
inverse centimeters to electron volts. Arbitrary unit sys-
tems can also be defined through the Unit class. For exam-
ple, a custom unit to denote polarization would be defined
as follows:

from skspec.units import Unit

polarization = Unit(
		 short = 'polar',
		 full = 'Polarization',
		 symbol = r'θ', # Latex optional
)

The short, full and symbol attributes ensure new units
will automatically interface to the indexing and plotting
systems.

Scikit-spectra includes graphical applications developed
fully with IPython’s widget API, and is one of the first librar-
ies to do so. The documentation is built with Sphinx[10],
using the Bootstrap theme[11], and sphinx gallery exten-
sions[12]; and is heavily inspired by the scikit-image and
scikit-learn[13] docs.

Examples of use3

To illustrate some basic functionality of scikit-spectra,
data are analyzed from a system of gold nanoparticles
(AuNPs) in a cuvette of water before and after protein has
been added to the solution. Binding between the protein
and the nanoparticles yields a characteristic shift towards
long wavelengths in the absorbance spectrum of the gold,
known as the localized surface plasmon resonance[14,15].
For brevity, a bundled dataset, aunps_water(), is used;
however, reading data from a CSV file is quite easy, as scikit-
spectra wraps Pandas’ powerful read_csv() parser.

from skspec.data import aunps_water

ts = aunps_water()
ts.iloc[0:5, 0:5]

The iloc indexer was used to display only the first five
rows and columns, as seen in Table 1. If working in the
IPython Notebook, Spectrum and Spectra objects will
automatically render as HTML tables, with metadata
attributes such as name, units, shape, baseline; and refer-
ence and normalization states, shown in the header. The
ability to store arbitrary metadata is crucial to repurpos-
ing Pandas for specific applications.

In this dataset, the baseline comes preset, but is not
subtracted. The dataset (baseline and reference spectra
are plotted as dashed lines for clarity) is shown in Fig. 1.
ts.reference = 0
ts.varunit = 's'
ax = ts.plot()
ts.baseline.T.plot(color='k', ls='--', ax=ax)
ts.reference.T.plot(color='magenta', ls = '--',
ax=ax);

Spectral data in their raw form are typically not very
useful; it is better to work with the absorbance spectrum,
which is defined by the transformation:

Gold Nanoparticles in Water (5 X 5)   [timestamp X nanometers]   lunit: Counts (photons)

Baseline: Found (no sub)   Reference: Found   Normalization: None

2013-02-04
15:40:48

2013-02-04
15:41:34

2013-02-04
15:42:20

2013-02-04
15:43:06

2013-02-04
15:43:52

200 305.53 306.31 305.23 305.17 307.22

201 311.67 313.43 312.75 314.12 314.88

202 318.09 319.56 319.12 319.51 319.13

203 323.47 324.90 322.34 324.48 325.61

204 340.97 340.09 340.86 342.99 341.78

Table 1: HTML output of first five rows and columns of gold nanoparticles in water. This built-in dataset is preset with
a stored baseline and reference spectra, and has column labels of timestamps.

Hughes et al: Scikit-spectra Art. e6, p.  3 of 6

l l l l l-n 10 n n n nA () = log (S () B () / R () B ())

where An(λ) is the absorbance of the nth curve, Sn(λ) is
the spectrum, Rn(λ) is the reference spectrum, and Bn(λ)
is the baseline. The absorbance data tend to be very noisy
in the short wavelength region, due to the small signal in
the raw data, so the usual procedure is to crop the values
between 400–700nm. The nearby() method invokes
nearest-neighbor slicing to index over an approximate
range; for example, nearby[400:700] will automati-
cally find and slice between the closest spectral index val-
ues, in this case 400.36–699.58nm.
from skspec.data import aunps_water

ts.sub_base() # subtract baseline inplace
ts.norm = 'a' # absorbance
ts = ts.nearby[400:700]
ts.plot(cbar=True)

The curves in Fig. 2 show the surface plasmon reso-
nance around 525nm and its clear shift to the right after
proteins are added.

The plasmon resonance refers to the wavelength at
which the nanoparticles maximally absorb, An(λmax). Prior
to analysis, the first few curves must be eliminated. These
correspond to the timepoints taken prior to the addition
of nanoparticles to the cuvette; that is, An(λmax) = 0. This is
most easily done through boolean masking, which nicely
exemplifies the notion of NumPy-compatibility .

The blue curves in Fig. 2 correspond to timeseries taken
before the addition of nanoparticles. To remove these and
retain only the subset of curves with significant absorb-
ance, a mask is defined with a lower threshold of 0.10
absorbance units.
mask = ts.max() > 0.10
ts_cut = ts[ts.columns[mask]] #Index by the mask

The new TimeSpectra, ts_cut, retains only curves after
the addition of AuNPs, the timepoint when the absorb-
ance maximum rises above the threshold value.

Next, the plasmon resonance shift vs. time is analyzed.
Pandas already has a method that returns the index

corresponding to the maximum value for every curve in
the dataset: idxmax(). Since scikit-spectra objects inherit
all Pandas methods, idxmax() is also a TimeSpectra
method.
ts_cut.idxmax().plot(title='SPR shift vs. time')
plt.ylabel('Peak Wavelength (nm)')

The method, ts_cut.idxmax(), returns a
Spectrum class whose plot() method is then called.
The result, shown in Fig. 3, indicates that the plasmon
resonance hovers between 524–525nm, then shifts
about 4 nm to 528–529nm. The jagged nature of the
trend merely reflects the 1nm resolution of our bench-
top spectrometer.

Most of the analysis so far could have been performed in
one of scikit-spectra’s Notebook GUIs. At any point in the
workflow, one could have opened the GUI, manipulated
the data, exported it back into the Notebook namespace,
and resumed working through the API, exemplifying the
philosophy of the GUI when you want it, the API when you
need it. The code needed to run the GUI and a screenshot

Fig. 2: Absorbance of AuNPs increases after the addi-
tion of bovine serum albumin protein, due to binding
between the protein and gold surface. The amount of
protein bound to the surface is related to the size of the
shift in peak position.

Fig. 3: Absorbance spectra maximum vs. time shows the
movement of the plasmon resonance position after pro-
tein binds to the AuNPs.

Fig. 1: Gold nanoparticles in water visualized: the data is
stored in a TimeSpectra class. Baseline and reference are
overlaid as dashed lines in black and magenta, respec-
tively. Reference is user-selected, in this case set to the
first curve in the dataset.

Hughes et al: Scikit-spectraArt. e6, p.  4 of 6

of the result are shown below in Fig. 4. The GUI sup-
ports nine plot types, as well as interactive plots through
mpld3[16]. A video tutorial of the GUI is available on the
scikit-spectra website[17].
from skspec.interact import SpectraModel,
SpectraGui

specmodel = SpectraModel(spec=aunps)  # �Traitlets
													  model
gui = SpectraGui(model=specmodel)	    # GUI
gui.tight_layout()
gui

Scikit-spectra provides a natural framework for general-
ized spectroscopy applications, such as two-dimensional
correlation spectroscopy(2DCS)[18], factor analysis[19]
and chemometrics[20]. An API for 2DCS has been imple-
mented, with the intention of turning scikit-spectra into
the de-facto toolkit for correlation spectroscopy. While
there are a few graphical applications for 2DCS, like
2dShiege[21] and MIDAS[22] in MATLABTM, there is no
corresponding API-level toolkit available. To demonstrate
scikit-spectra’s 2DCS API, the asynchronous4 correlation
spectrum[23] of the AuNPs dataset will be analyzed.

Asynchronicity, Ψ(λ,λ), measures the spectral distri-
bution of uncorrelated events over a time5 interval. For
example, if a peak at λ=a forms early in an experiment,
and then later a second peak at λ=b appears, then there is
asynchronicity at Ψ(a,b) because these events occurred at
different times: they are uncorrelated and likely due to dif-
ferent underlying processes in the system. If the peaks had

formed at the same time, then they would be regarded as
highly synchronous. Together, synchronicity and asynchro-
nicity encompass all of the variance in the dataset. 2DCS
applications are discussed much more extensively in the
scikit-spectra documentation. For datasets with many
spectral peaks, 2DCS can often resolve otherwise intrac-
table information about the order and nature of events in
the system.
from skspec.correlation import Corr2d

cspec = Corr2d(ts.nearby[:600])
cspec.async.plot(contours=128, cbar=True)

Fig. 5 illustrates the asynchronicity at wavelengths
ranging from 200 to 600nm in the absorbance spectra.
The time-span, spectral unit, spectral symbol and other
metadata appear in the default plot labels, demonstrating
the connectedness of scikit-spectra’s units and plotting
APIs. Strong cross-peaks between the ultraviolet and the
plasmon resonance regions indicate that at some point
in the experiment these peaks change asynchronously.
This is verified by looking back at the data and observing
that the initial protein binding leaves the nanoparticles
saturated, with no binding-sites for a second addition of
proteins. However, the additional protein does increase
the absorbance in UV region. In other words, adding pro-
tein late in the experiment increases short-wavelength
absorption, but has no effect on the plasmon resonance
shift, resulting in asynchronicity between the 250nm and
530nm regions.

Fig. 4: IPython Notebook GUI for plotting, slicing, resampling, changing units and IO.

Hughes et al: Scikit-spectra Art. e6, p.  5 of 6

Quality control
Scikit-spectra includes a preliminary nose[24] test frame-
work, inspired by the excellent Pandas test suite. A collec-
tion of tutorials and website examples are batch-run to catch
breaking-changes that are not covered by the nose tests.

(2) Availability
Operating system
Scikit-spectra has been tested on Ubuntu 10.04, 12.04,
13.10; Mac OS 10.8, and Windows 7.

Programming language
Python 2.7

Dependencies

For core functionality
Pandas v0.14, SciPy, NumPy, matplotlib

For full functionality
IPython v2.0 or higher, mpld3, Traits

List of contributers
Adam Hughes, Zhaowen Liu

Software location
Archive

Name
scikit-spectra

Identifier
DOI 10.5281/zenodo.13965

Licence
BSD 3-Clause License

Publisher
Zenodo

Date published
1/15/15

Code repository
Name
Github

Identifier
https://github.com/hugadams/scikit-spectra

Licence
BSD 3-Clause License

Current version
0.3.2

Date published
Fall 2012 (formerly “pyuvvis”)

Documentation
Url
hugadams.github.io/scikit-spectra/

Mailing list
scikit-spectra.39571.n7.nabble.com

(3) Reuse potential
Scikit-spectra is built for generalized applications, and
built on the already successfully Pandas library. Scikit-
spectra’s core design is adaptable to many branches of
spectroscopy, such as NMR, IR and Raman. Ideally, each
branch will eventually be supported as a distinct subset
of scikit-spectra, built on the same core framework. This
is a long-term goal and will require contributions from
many scientists and developers. The vision for scikit-
spectra is to adapt and interface with other spectroscopy
libraries, not supplant them. Unifying Python’s spec-
troscopy libraries, whether or not it ultimately involves
scikit-spectra, is critical to bringing open-source solu-
tions to the research community, much in the same
way that ImageJ[25] has brought open-source image
processing into the mainstream. Interested developers
are welcome to contact the authors with suggestions
or ideas.

Acknowledgements
We’d like to acknowledge the following developers for
helpful discussions, without which scikit-spectra would
not have been realized:

•	 Nicholas Bollweg (IPython)
•	 Jeff Reback and Stephan Hoyer (Pandas)
•	 Jonathan March and Robert Kern (Traits)

Fig. 5: Asynchronous correlation spectrum of gold nano-
particle absorbance at wavelengths ranging from 200–
600nm. The strong cross peaks between the UV and
plasmon resonance regions (roughly 525–550nm) cor-
responds to the time after nanoparticle-protein bind-
ing is saturated. Addition of more protein causes a UV
response, but no response in the plasmon resonance
region, resulting in this asynchronicity. Sideplots show
the mean-centered average spectrum from the full set.

http://doi.org/10.5281/zenodo.13965
https://github.com/hugadams/scikit-spectra
http://hugadams.github.io/scikit-spectra/
http://scikit-spectra.39571.n7.nabble.com/

Hughes et al: Scikit-spectraArt. e6, p.  6 of 6

Notes
1 � Scikit stands for SciPy Toolkit, which are SciPy-based

libraries deemed too specialized to live in the core SciPy
distribution.

2 � The term “explorative” refers to an API compatible
with SciPy libraries to streamline customized analysis
visualization.

3 � These examples are available in a single notebook at:
http://nbviewer.ipython.org/github/hugadams/scikit-
spectra/blob/master/examples/Notebooks/grad_
presentation.ipynb

4 � The synchronous and asynchronous correlation spectra are
fundamental to 2DCS. Some important new developments
include generalized scaling of correlation spectra[X] and
the derivation of the so-called codistribution spectra[X],
both of which are built into scikit-spectra’s 2DCS API.

5 � 2DCS is also applicable to non-temporal datasets, for
example spectra changing as a function of pressure,
temperature or any other “perturbation variable”.

References
  1.	Bohren, H 1983 Absorption and Scattering of Light by

Small Particles, John Wiley & Sons, INC.
  2.	Ginsburg, A and Mirocha, J 2011 ‘PySpecKit: Python

Spectroscopic Toolkit’, Astrophysics Source Code
Library, record ascl:1109.001 URL: http://adsabs.
harvard.edu/abs/2011ascl.soft09001G

  3.	Gorsuch, R L 1983 Factor Analysis, 2nd edn, Lawrence
Erlbaum Associats, Inc., Hillsdale, NJ.

  4.	Helmus, J and Jaroniec, C 2013 ‘Nmrglue: An open
source Python package for the analysis of multidi-
mensional NMR data’, Journal of Biomolecular NMR
55(4), 355–367. URL: http://link.springer.com/arti-
cle/10.1007/s10858-013-9718-x

  5.	Hoyer, S 2015 ‘xray: N-D labeled arrays and datasets in
Python’. URL: https://github.com/xray/xray

  6.	Hughes, A and Liu, Z 2014 ‘scikit-spectra: Tools for
explorative spectroscopy’. URL: http://hugadams.
github.io/scikit-spectra/

  7.	Jones, E, Oliphant, T and Peterson, P 2001 ‘Scipy:
Open source scientific tools for Python’. URL: http://
www.scipy.org

  8.	Jordahl, K 2014 ‘GeoPandas: Python tools for geo-
graphic data’. URL: https://github.com/geopandas/
geopandas

  9.	McKinney, W 2010 Data Structures for Statistical
Computing in Python, in S. van der Walt & J. Millman,
eds, ‘Proceedings of the 9th Python in Science Confer-
ence’, pp. 51–56. URL: http://pandas.pydata.org/

10.	Morita, S 2002 ‘2D Shige’. URL: https://sites.google.
com/site/shigemorita/home/2dshige

11.	Nájera, O 2014 ‘Sphinx-Gallery’. URL: https://github.
com/sphinx-gallery/sphinx-gallery

12.	Noda, I 2007 ‘Scaling techniques to enhance two-
dimensional correlation spectra’, Journal of Molecular
Structure 883–884, 216–227. URL: http://linkinghub.
elsevier.com/retrieve/pii/S0022286007008411

13.	Noda, I and Ozaki, Y 2004 Two-Dimensional Correla-
tion Spectroscopy, Wiley.

14.	Normand, E 2011 MIDAS 2010: Mid-Infrared Data
Analysis Software 2010 A Matlab Package for 2D IR
Spec-troscopy Analysis. URL: http://www.mathworks.
com/matlabcentral/fileexchange/32384-midas-2010

15.	Oliphant, T E 2007 ‘Python for Scientific Computing’,
Computing in Science & Engineering 9(90), 2007. URL:
http://www.numpy.org/

16.	Pedregosa, F et. al. 2011 ‘Scikit-learn: Machine Learn-
ing in Python’, Journal of Machine Learning Research
12, 2825–2830. URL: http://scikit-learn.org/stable/

17.	Pellerin, J 2009 ‘nose’. URL: https://nose.readthedocs.
org/en/latest/

18.	Perez, F and Granger, B 2007 ‘IPython: a Stystem for
Interactive Scientific Computing’, Computing in Sci-
ence and Engineering 9(3), 21–29.

19.	Roemer, R 2014 ‘Sphinx Bootstrap Theme’. URL: http://
ryan-roemer.github.io/sphinx-bootstrap-theme/

20.	Schneider, C A, Rasband, W S, and Eliceiri, K 2012
‘NIH Image to ImageJ: 25 years of image analysis’,
Nature Methods: Focus on Bioimage Informatics 9(7),
671–675. URL: http://www.nature.com/nmeth/
journal/v9/n7/full/nmeth.2089.html

21.	Sphinx: Python Documentation Generator 2014
URL: http://sphinx-doc.org/index.html

22.	Vanderplas, J 2014 ‘mpld3: Brining Matplotlib to the
Browser’. URL: http://mpld3.github.io/

23.	van der Walt, S, Nunez-Iglesias, J, Boulogne, F,
Warner, J and Al, E 2014 ‘scikit-image: image pro-
cessing in Python’, PeerJ (453). URL: http://scikit-
image.org/

24.	Willets, K A and Van Duyne, R P 2007 ‘Localized
surface plasmon resonance spectroscopy and
sensing.’, Annual review of physical chemistry
58, 267–97. URL: http://www.ncbi.nlm.nih.gov/
pubmed/17067281

25.	Wu, Y, Tsenkova, R and Ozaki, Y 2000 ‘Methods,
Chemometrics, and Two - Dimensional Correlation
Spectroscopy in the Analysis of Near - Infrared’,
54(7).

How to cite this article: Hughes, A, Liu, Z and Reeves, M E 2015 Scikit-spectra: Explorative Spectroscopy in Python.
Journal of Open Research Software 3:e6, DOI: http://dx.doi.org/10.5334/jors.bs

Published: 05 June 2015

Copyright: © 2015 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://link.springer.com/article/10.1007/s10858-013-9718-x
http://link.springer.com/article/10.1007/s10858-013-9718-x
https://github.com/xray/xray
http://hugadams.github.io/scikit-spectra/
http://hugadams.github.io/scikit-spectra/
http://www.scipy.org/
http://www.scipy.org/
https://github.com/geopandas/geopandas
https://github.com/geopandas/geopandas
http://pandas.pydata.org/
https://sites.google.com/site/shigemorita/home/2dshige
https://sites.google.com/site/shigemorita/home/2dshige
https://github.com/sphinx-gallery/sphinx-gallery
https://github.com/sphinx-gallery/sphinx-gallery
http://linkinghub.elsevier.com/retrieve/pii/S0022286007008411
http://linkinghub.elsevier.com/retrieve/pii/S0022286007008411
http://www.mathworks.com/matlabcentral/fileexchange/32384-midas-2010
http://www.mathworks.com/matlabcentral/fileexchange/32384-midas-2010
http://scikit-learn.org/stable/
http://ryan-roemer.github.io/sphinx-bootstrap-theme/
http://ryan-roemer.github.io/sphinx-bootstrap-theme/
http://sphinx-doc.org/index.html
http://mpld3.github.io/
http://www.ncbi.nlm.nih.gov/pubmed/17067281
http://www.ncbi.nlm.nih.gov/pubmed/17067281
http://dx.doi.org/10.5334/jors.bs
http://creativecommons.org/licenses/by/3.0/

	_GoBack

