
Wijnen, B et al 2016 Free and Open-source Control Software for 3-D Motion and Processing.
Journal of Open Research Software, 4: e2, DOI: http://dx.doi.org/10.5334/jors.78

Journal of
open research software

SOFTWARE METAPAPER

Free and Open-source Control Software for 3-D Motion
and Processing
Bas Wijnen1, Gerald C. Anzalone1, Amberlee S. Haselhuhn1, P. G. Sanders1 and
Joshua M. Pearce2

1	 Department of Materials Science & Engineering, Michigan Technological University, Houghton, MI, 49931, US
bwijnen@mtu.edu, gcanzalo@mtu.edu, aslifer@mtu.edu, sanders@mtu.edu

2	Department of Materials Science & Engineering, Michigan Technological University, Houghton, MI, 49931, US,
Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI, 49931, US
pearce@mtu.edu

Corresponding author: Joshua M. Pearce

RepRap 3-D printers and their derivatives using conventional firmware are limited by: 1) requiring techni-
cal knowledge, 2) poor resilience with unreliable hardware, and 3) poor integration in complicated sys-
tems. In this paper, a new control system called Franklin, for CNC machines in general and 3-D printers
specifically, is presented that enables web-based three dimensional control of additive, subtractive and
analytical tools from any Internet connected device. Franklin can be set up and controlled entirely from
a web interface; it uses a custom protocol which allows it to continue printing when the connection is
temporarily lost, and allows communication with scripts.

Keywords: 3-D printing; additive manufacturing; distributed manufacturing; firmware; free and open
source software; FOSS, open-source; open-source electronics; open-source hardware; personal fabrication;
printing; RepRap; rapid prototyping
Funding statement: This material is based on research sponsored by Air Force Research Laboratory under
agreement number FA8650-12-2-7230. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and con-
clusions contained herein are those of the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory or
the U.S. Government.

(1) Overview
Introduction
Since Bowyer’s open source release of the self-replicating
rapid prototyper (RepRap) [1, 2], people from all over
the world have been building and improving RepRap
3-D printers [3]. The existing control system consists of
two parts: firmware on the 3-D printer to send the sig-
nals through to individual components, and a program
on a desktop computer to send instructions (G-code) to
the firmware. Current firmware options (Table 1) use the
same interface with the host, and suffer from two fun-
damental problems: 1) they are not robust and 2) they
require a weak microcontroller to do significant work,
thus limiting their functionality. Some firmware solve the
latter challenge by requiring a more powerful microcon-
troller, which limits its applicability.

As there is a standard communication format between
existing firmware and hosts, there are also many different

options for host software including Pronterface [4], Cura
[5] and OctoPrint [6]. In terms of ease of use, OctoPrint
stands out: it provides a web interface to control the
printer over a network from any device with a browser.
OctoPrint supports monitoring the printer with a web-
cam, and makes recordings of the print. Another project
that is worth noting in detail is Pacemaker [7]. Pacemaker
defines a new protocol that tries to move most compu-
tationally intensive tasks from the firmware to the host.
This protocol replaces G-code and requires firmware that
can handle it. The Pacemaker program itself runs on a host
computer, converting G-code into the format understood
by the firmware. The format is designed to be backwards
compatible, so different firmware and hosts can work
together. This only works if new configurations are tested
and validated, requiring many users to maintain a unique
configuration. At this point, it is unclear whether it will
gain the critical mass necessary for success.

http://dx.doi.org/10.5334/jors.78
mailto:bwijnen@mtu.edu
mailto:gcanzalo@mtu.edu
mailto:aslifer@mtu.edu
mailto:sanders@mtu.edu
mailto:pearce@mtu.edu

Wijnen et al: Free and Open-source Control Software for 3-D Motion and ProcessingArt. e2, p.  2 of 12

Reliability has also been identified as a core chal-
lenge for low-cost 3-D printers [8]. For a system to
work reliably, data sent between components must not
be corrupted and as this is not always avoidable, error
checking is required. Unfortunately, ubiquitous com-
puter numerical control (CNC) tools of all types most
commonly use G-code, which provides a weak check-
sum for data sent to the device and no protection for
replies. For unreliable connections, the host computer
reports a lost serial port, almost immediately followed
by a newly discovered port. For all of the current con-
trol systems summarized in Table 1, when this occurs
mid-print, the print fails. This can only be fixed by
changing the protocol between firmware and host soft-
ware, and then both the firmware and the host software
need to be changed to implement the new protocol.
Recovering from such connection issues is becoming
increasingly important as printers become larger (e.g.
Gigabot), work on more sophisticated designs such as
scientific [9, 10] and medical equipment [11, 12, 13],
and solar-powered printers are used to accelerate sus-
tainable development [14, 15, 16].

CNC machines are powerful general purpose motion
controllers that are capable of integrating with a system,
for example to perform a constant criterion experiment
such as recording the adjustments made to an actuator
required to keep a measured value constant. While the
hardware is capable, the G-code protocol provides no
means for performing such functions. Similarly G-code
does not integrate well with other programs, which pre-
vents one click print functionality. To solve these two
problems a scripted interface is necessary.

In this paper a new control system called Franklin is
presented to be used with CNC machines in general and
3-D printers specifically. It was developed while exploring
modifications to RepRap 3-D printers, in order to make
them more powerful and more user friendly. It solves the
problems identified above and allows CNC machines to
be more productive and valuable. Franklin was tested
on the following RepRap devices: Mendel RepRap, Delta
RepRap, OS laser welder, PCB micromill, and the open
source metal 3-D printer. The results are presented and
discussed.

Implementation and Architecture
Franklin’s purpose is to: 1) drive CNC hardware including
motors, switches, and a tool head and 2) integrate well
with the remaining software tool chain, such as 3-D mod-
eling programs and slicers. Slicers translate a 3-D shape
described by an STL file and slice it into consecutive thin
layers in the z-direction (vertically) as g-code. The full code
of Franklin is available on Github under the GNU Affero
General Public License [17].

System Description
Reprap 3-D printers have a dedicated real time con-
trol board, which is normally based on the Arduino [18]
prototyping platform. When using Franklin, the control
board contains Franklin Firmware, which handles low-
level control and communicates with a more powerful
host computer using a serial interface. On the host com-
puter, Franklin Server provides a web interface that can
be used from any device on the same network, includ-
ing the Internet (Figure 1). Franklin uses an encrypted
(HTTPS) connection and allows restricting access with a
password to prevent unauthorized users from controlling
the device.

The Franklin Server can handle multiple devices
simultaneously using a dedicated driver for each device.
This driver consists of two processes: one handling high
speed and time sensitive functions written in C++ (the
Franklin C Driver), and one handling the rest written
in Python (the Franklin Python Driver). In addition to
communicating with each other, the Franklin C Driver
communicates with the Franklin Firmware, while the
Franklin Python Driver communicates with Franklin
Server. During device discovery, before the driver is
started, the Franklin Server also communicates directly
with the Franklin Firmware.

For Franklin to be considered acceptable as a firmware
solution, tests were run using the following: Mendel
RepRap [19], Delta RepRap [20], quad delta RepRap (4 ver-
tically stacked quad MOST delta RepRap heads run on a
single microcontroller and set of three position stepper
motors), OS laser welder [10], PCB micromill [21] and the
open source metal 3-D printer [22]. The test data obtained
from the latter was utilized to further develop the metal

Name Hardware Comments

RepRap Firmware (original) ARM

LinuxCNC PC Uses the parallel port, or GPIO pins on a
Raspberry Pi or BeagleBone

RepRap Firmware (fork by dc42) ARM Based on RepRap Firmware

Marlin AVR Adaptation of Grbl for 3-D printers

Repetier AVR, ARM Based on Marlin

Teacup AVR, ARM Runs on AVRs with low memory, such as
Arduino Uno

aprinter AVR, ARM

Smoothie ARM

Table 1: Current RepRap Firmware.

Wijnen et al: Free and Open-source Control Software for 3-D Motion and Processing Art. e2, p.  3 of 12

3-D printer design [23]. Rather than including parts
produced via fused filament fabrication, the updated
3-D printer design was constructed entirely from metal
parts to reduce damage caused by weld splatter. Franklin
Firmware and the improved metal 3-D printer were used
to establish low-cost substrate release mechanisms that
allow metal 3-D printed objects to be removed from a
metal print substrate with minimal force [23].

Franklin Firmware
Franklin Firmware only handles tasks that cannot be per-
formed well by the host computer as the microcontroller
lacks processing power and memory (8 bit, 16 MHz, no
hardware assisted floating point operations) compared
to the host computer’s processor. Fewer microcontroller
tasks ensures more time to complete them, improving
overall system performance. Franklin goes further than
Pacemaker in this regard. Pacemaker assumes all machines
to be Cartesian, and approximates moves on any machine
that is not. Alternatively, Franklin allows the host to com-
pute exactly when to execute a step with each motor, and
the firmware will do them at the requested time, regard-
less of mechanical design. However, due to limits on the
bandwidth of the serial port, this ideal situation only
occurs at very low speeds (below 200 steps per second,
which equates to around 4 mm per second, depending on
the printer design). At higher speeds, the moves are inter-
polated in the same way as Pacemaker and most other
firmwares handle non-Cartesian configurations. Franklin
Firmware handles temperature controls, general purpose
input/output (GPIO) pins, and control of stepper motors.

Temperature Controls
The Arduino has an analog-to-digital converter (ADC)
multiplexed to several pins. On one or more of those pins,
a voltage divider with a thermistor is normally used to

measure the temperature of extruders and the heated bed
of conventional RepRaps. Franklin Firmware continuously
reads all analog inputs that are set up as temperature
controls and controls two GPIO (general-purpose input/
output) pins based on the measured value. One of the
controlled GPIOs is connected to the heater and the other
controls a cooling fan. The heater and fan controls each
have set points and the state of the GPIOs upon reach-
ing set point is configurable. It is also possible to simply
measure temperature without any control activity. The
temperature reading is communicated to the host, so it
can be used by scripts and shown in a browser.

Updating the heater and fan is not time sensitive
so it is reasonable to take that part of the controls out
of the firmware and implement it in the driver instead.
However, it is important that these controls never fail: if
a heater remains switched on while the extruder is very
hot, it will damage the machine and can be a fire hazard.
Were temperature control implemented in the Franklin
Driver instead of Franklin Firmware, this scenario could
occur when the serial connection is lost. Therefore, a sim-
ple heater control system is integrated into the Franklin
Firmware. A more complicated system, such as a PID con-
troller, could still be implemented in the Franklin C Driver.
In that case, the system in the Firmware would serve as a
protection against overheating.

GPIO Controls
Some printers and CNC machines have a need for control-
ling extra components. In most cases, they need simple
digital signals, which can be either on or off. For example,
the open source metal RepRap 3-D printer needs to switch
a metal inert gas (MIG) welder (also known as gas metal
arc welding or GMAW) on and off. Every microcontroller
has a number of digital GPIO pins that can be used for this
purpose. Franklin Firmware provides a simple interface to

Figure 1: Schematic of the workflow of creating a 3-D printed object using Franklin.

Wijnen et al: Free and Open-source Control Software for 3-D Motion and ProcessingArt. e2, p.  4 of 12

use them: it allows the pins to be set in any of four states:
output low, output high, input, or input with pull up resis-
tor. Scripts can read the values from input pins. In addi-
tion to storing a current state of each pin, it also stores a
reset state. When a reset is requested, or when the connec-
tion is lost for some time, the pins are all changed to their
reset state to avoid problems (for example, the welder will
be switched off upon permanent loss of communication
with the host).

Stepper Motor Control
The hardware may have any number of stepper motors to
move the tool in space, and to activate the tool (such as
to extrude material from the nozzle in fused filament fab-
rication). However, the motors do not always correspond
directly to a simple direction in Cartesian space. For exam-
ple, on a delta bot, all three positioning motors need to
move simultaneously for the tool to move in any straight
line. As the conversion from tool position to motor posi-
tions can be complex, this conversion is performed in the
Franklin C Driver.

Franklin Firmware only has a concept of motor posi-
tions. The Franklin C Driver sends it a list of numbers of
steps to take, which can be positive or negative. Franklin
Firmware steps through this list at a constant speed and
sends the steps to the motors at the requested times.
ADC readings are performed in the background, leaving
the microcontroller to focus resources on motor control
so that steps can be very well timed leading to smoother
movement.

Franklin C Driver
The computationally intensive conversion from tool posi-
tion to motor position is implemented in C++ as Python is
not fast enough. It groups motors into “spaces”. Every space
has a Cartesian coordinate system where the tool can be
positioned, and a certain geometry. Currently, Cartesian
and delta geometries are implemented, while other geom-
etries are left for future work. 3-D printers will normally
consist of two spaces: one for moving the 3-dimensional
tool and one for the 1-dimensional extruder. A 3-D printer
with multiple extruders has a higher dimensionality for its
extruder space.

The Franklin C Driver receives instructions similar to
G-code from the Franklin Python Driver. It converts those
into the step maps that the Franklin Firmware needs, and
sends them to the printer controller. In addition, it passes
GPIO and ADC commands between the Franklin Firmware
and the Franklin Python Driver.

Franklin Python Driver
As many tasks as possible are implemented in the Franklin
Python driver, including interface provision with both
scripts and browsers. The Franklin Python driver informs
interfaces of changes, parses G-code they send, and stores
settings. All settings, including pin assignments, can be
changed without rewriting the firmware to the microcon-
troller. In addition, settings can be written to hard disk
as machine profiles to make sure they are available for
reloading the next time the machine starts. Any number
of profiles are supported permitting settings for different

purposes. For example, if a machine can accommodate dif-
ferent tools, a different profile may be used for each tool.

Franklin Server
Multiple machines are handled concurrently by the
Franklin Server. It detects devices when they are con-
nected and starts the Franklin Python Driver for them,
which in turn starts its own Franklin C driver. If a device
is detected for which a Franklin Python Driver had already
been started (that is, one that had lost its connection),
the Franklin Server informs this driver of the reconnected
machine and it will resume its operation. If this happens
before the buffer in the Franklin Firmware runs out, it has
no effect on the currently running job.

The Franklin Server provides a web interface, similar to
Octoprint. (but without a webcam, although this is easily
added). This means that any device with a browser, includ-
ing a tablet or smartphone, can be used to control it. The
web interface makes heavy use of Javascript to present all
the changes that are reported by the Franklin Server to the
user. It communicates with the Franklin Server using web-
sockets. This same websockets interface is also exposed to
other scripts. The web site allows manual control of the
machine while scripts can integrate it with any automated
or manual system.

The web interface allows all settings to be changed,
including pin assignments, thermistor values and printer
geometry (Figure 2). These changes take effect imme-
diately. For example, if a request to double the number
of steps per millimeter for the extruder drive is received
while printing a segment, the remainder of that segment
outputs twice as much filament per millimeter than
before the change.

Additionally, if a change in machine geometry is made
while the motors are enabled and idle, the tool is moved
to the current position according to the settings describ-
ing the new geometry. This allows for easy machine cali-
bration, including calibration types that are challenging
with traditional systems such as the printer radius of a
delta. Franklin instructs the printer to move to a height
of 0. Then the limit switch positions are changed and the
nozzle will move to reflect that change. When the noz-
zle touches the build platform, the limit switch position
is correct. Then the nozzle is instructed to move horizon-
tally to the edge of the build platform. Now the radius
is changed and the nozzle will again move to reflect that
change. When the nozzle touches the build platform
again, the calibration is complete. The whole procedure
can be completed within one minute with no additional
sensors.

Communication
There are four communication interfaces in Franklin. The
first is a websockets connection to the browser or script
clients. Every packet on this connection is a JSON array,
containing a numerical ID chosen by the client, the name
of the function to call, a list of regular arguments and a
list of keyword arguments. The server calls the requested
function with the given arguments and returns either
a value or an error, also encoded as a JSON array. This
array contains the ID that was sent with the request, so

Wijnen et al: Free and Open-source Control Software for 3-D Motion and Processing Art. e2, p.  5 of 12

the client can send asynchronous messages. A list of sup-
ported functions is given in Table 2.

The second interface is between the Franklin Server
and the Franklin Python Driver. The commands are
sent over standard input and standard output of the
Franklin Python Driver. The protocol is identical to the
one described above, except that the JSON packets are
not wrapped in a websocket before being sent. When the
functions in Table 2 are requested from the Franklin
Server, it will pass them through to the Franklin Python
Driver. The exception are the functions marked “server
only”; those are handled by the server and not valid for
this interface.

The third interface is between the Franklin Python
Driver and the Franklin C Driver, and is different from
the others. The Franklin C Driver should not be burdened
with parsing JSON packets, so instead it accepts binary
data which is more easily extracted from the packet.
Every packet starts with a byte containing the length of
the packet, followed by a command byte. Each command
has its own arguments. A list of all commands that the
Franklin C Driver understands is given in Table 3.

Commands from the Franklin C Driver to the Franklin
Python Driver also start with a length byte and a com-
mand byte. Then follow three 32 bit integers and a 32 bit

floating point value. For most commands, 18 bytes are all
that is required. The commands that may need more bytes
(DATA and RUN_FILE) have a larger length value and fol-
low those values with a list of bytes.

When a GOTO or PROBE command is received, a reply
is sent, which is either OK or WAIT. In the latter case the
queue is full and no further GOTO or PROBE commands
can be sent until the Franklin C Driver sends a CONTINUE
command.

The last interface is between the Franklin C Driver and
the Franklin Firmware. This interface has unique qualities
because it is implemented over a physical serial line that is
much slower and unreliable. Because of the large amount of
data that needs to be transmitted over this slow interface,
the length byte is not sent, and the length of packets must
be determined from their content. Because reliability is
important, a checksum is added to maintain packet integrity.

Data is either a single byte command or a packet. The
single byte commands all have their highest bit set,
and are otherwise chosen to have a maximum distance
between them in terms of bit flips required to go from
one to the other. A packet starts with a command, none
of which has the highest bit set. The command byte is
followed by arguments. One or more checksum bytes are
added at the end of the packet.

Figure 2: Franklin web interface.

Wijnen et al: Free and Open-source Control Software for 3-D Motion and ProcessingArt. e2, p.  6 of 12

Command Function

upload Flash new firmware to an Arduino. (server only)

find_printer Search for a machine by UUID or port. (server only)

set_autodetect, get_autodetect Whether the server tries to detect a machine on newly discovered ports. (server only)

disable Deactivate the machine. (server only)

detect, detect_all Detect a machine, or all printers. (server only)

add_port, remove_port Notify server of port discovery. (server only, called from kernel signals)

get_ports Get list of available ports. (server only)

set_default_printer,
get_default_printer

Which machine is used by new connections. (server only)

set_printer, get_printer Which machine is used by this connection. (server only)

set_monitor, get_monitor Whether this connection should be informed of changes in settings. (server only)

reset Reset the Arduino.

die Close the Python and C driver.

flush Wait for queue to be empty.

probe Map an area using a probe signal or manual feedback.

goto Move motors to a position.

gotocb Move motors to a position and wait for it to arrive.

sleep Change sleep state of the motors.

settemp Change the set point of a temperature control.

waittemp Signal an alarm when a temperature enters a specified range.

readtemp Request current temperature.

readpin Request current value of a GPIO pin.

load, save, list_profiles, remove_
profile, set_default_profile

Profile management.

abort Disable heaters, sleep motors, reset GPIO pins and stop any running G-code.

pause Pause or resume the currently running G-code.

queued Request length of the queue.

home Recalibrate the machine with limit switches.

park Home if required, then go to park position.

wait_for_temp Wait until an alarm from waittemp is triggered.

clear_alarm Clear the waittemp alarms.

export_settings Retrieve all settings for storing in a text file.

import_settings Change settings from a text file.

gcode_run Run (parsed) G-code.

request_confirmation Wait for the user to press a button or abort.

confirm Signal confirmation.

queue_add Parse G-code and add it to the queue.

queue_remove Remove an entry from the queue.

gcode_parse Parse G-code and return the result.

gcode_bbox Find the bounding box of parsed G-code.

queue_print Send one or more queue entries to the machine.

queue_probe Probe the combined bounding box of one or more entries, then send them to the machine.

get_globals, set_globals Manage global settings

get_axis_pos Get current position of an axis.

set_axis_pos Set current position of an axis, without moving the motors.

get_space, get_axis, get_motor,
set_space, set_axis, set_motor

Manage space settings.

get_temp, set_temp Manage temp settings.

get_gpio, set_gpio Manage GPIO settings.

send_printer Request current state of a machine.

Table 2: Supported functions.

Wijnen et al: Free and Open-source Control Software for 3-D Motion and Processing Art. e2, p.  7 of 12

In G-code, the checksum is computed by summing all
bytes of the packet and using the lowest 8 bits of the
result. This is very weak, and two flipped bits have a large
chance of resulting in a valid checksum, even though the
packet is incorrect.

Franklin uses a Hamming code [24] with one parity byte
for every three bytes of data. That byte contains five parity
bits, each of which set the parity of a selected group of bits
to be even. The groups are carefully chosen to maximize
the distance between valid packets. Two bit flips can never
result in another valid packet, and more random flips are
very unlikely to do so.

Detection of corrupt packets is required but is not suf-
ficient for a reliable connection. Corrupt and lost packets
must also be properly handled. When it is detected that
a packet did not arrive, it is sent again. This means that
if the packet was received but the acknowledgment was
not, duplicate packets may be received. This must also be
handled. The method for this has been copied from the
USB standard: Each packet has one bit which indicates
if it is an even or odd packet. Even packets are acknowl-
edged with ACK0, odd packets with ACK1. If an even
packet is received after an even packet, then the original
ACK must have been lost. In that case, another ACK0 is

Command Function Response

RESET Reset the machine.

GET_UUID Get universally unique identifier for the machine. UUID

GOTO Add segment to move queue. MOVECB

RUN_FILE Run a parsed G-Code file from disk. UPDATE_TEMP,
UPDATE_PIN, CONFIRM,
FILE_DONE

PROBE Like goto, and monitor probe pin to abort move and notify
Python Driver about position.

MOVECB, LIMIT

SLEEP Enable or disable the motors.

SETTEMP Set a temperature target.

WAITTEMP Set an alarm. TEMPCB

READTEMP Read current temperature. TEMP

SETPOS Set current axis position.

GETPOS Get current axis position. POS

READ_GLOBALS Get global settings. DATA

WRITE_GLOBALS Set global settings.

READ_SPACE_INFO, READ_SPACE_
AXIS, READ_SPACE_MOTOR

Get space settings. DATA

WRITE_SPACE_INFO, WRITE_SPACE_
AXIS, WRITE_SPACE_MOTOR

Set space settings.

READ_TEMP Get temp settings. DATA

WRITE_TEMP Set temp settings.

READ_GPIO Get GPIO settings. DATA

WRITE_GPIO Set GPIO settings.

QUEUED Request queue length and optionally abort move. QUEUE

READPIN Get GPIO pin state. PIN

HOME Move away from limit switches until it no longer hits them. HOMED

RECONNECT Machine has reconnected at this port.

RESUME Resume running a file that was previously paused.

GETTIME Get time estimates about the current job. TIME

(asynchronous) Notify that the state of an input GPIO has changed. PINCHANGE

(asynchronous) A limit switch was triggered during a move. LIMIT

(asynchronous) The machine was disabled due to a timeout. TIMEOUT

(asynchronous) The connection to the machine was lost. DISCONNECT

Table 3: Commands for the Franklin C Driver.

Wijnen et al: Free and Open-source Control Software for 3-D Motion and ProcessingArt. e2, p.  8 of 12

sent, but the packet is ignored, because the original even
packet has already been handled. Odd packets are han-
dled similarly.

This system allows any amount of lost or corrupted
packets with no effect on the reliability of the link.
Because the Franklin Server is capable of detecting that
a new printer is the same as one that has previously dis-
connected, it can pick up the connection and continue as
if nothing happened. If this happens in the middle of a
print, it will only pause for a moment. If the connection is
restored before the queue in Franklin firmware is empty,
no pause will occur. Table 4 lists all the commands that
are supported.

Controlling Movements
A movement request to the C Driver consists of two
speeds, F0 and F1, and a target position for each dimen-
sion in each space. F0 is the requested starting speed,
while F1 is the requested finishing speed. The tool must
move on a linear path and accelerate at a constant rate
during the segment.

F0 and F1 are limited to maximum values which are set
for each axis. Because of this, the common way to move
fast is to request a speed of infinity. That will make the
tool move at the maximum allowed speed configured in
settings.

While moving, the speed and acceleration of every
motor is limited as well. On a Cartesian system, the rela-
tionship between motor speed and axis speed is linear and
simple. But this is not true for other machine geometries.
For example, on a delta system motors are changing speed
constantly to keep the nozzle moving in a horizontal line
at a constant speed. Franklin Firmware limits the motor
speed and acceleration so it is able to avoid missing steps
even when the tool is at the edge of the build volume
where one motor must move a large distance to effect a
small amount of distance by the tool. Franklin Firmware
accomplishes this without slowing the system down when
it is more near the center.

Setting limits on acceleration has a very negative influ-
ence on print speed, especially if there are many short seg-
ments, such as in curves with small radii. This is due to a
discontinuity in the direction of the path that has an infi-
nitely large acceleration for any speed other than zero. To
solve this, Franklin Firmware has a setting for how much
to deviate from the requested path. Franklin Firmware
will cut the corners by that amount, and it will use this
curve to gradually change the speed of all the motors.

Figure 3 schematically shows how the move comprising
a segment is prepared. This occurs when the previous move
has completely finished; in the case of a deviation from the
path, the move has already started at this point (Figure 3).

Command Function Response

BEGIN Handshake; send version and receive capabilities. READY

PING Handshake. PONG

RESET Reset the Arduino.

SETUP Set up globals.

CONTROL Manage GPIO pin states.

MSETUP Set up motor settings.

ASETUP Set up ADC (temp) settings.

HOME Move away from limit switches. HOMED

START_MOVE Begin sending movement buffers.

START_PROBE Begin sending movement buffers for probing.

MOVE Send movement buffer for one motor.

START Begin moving.

STOP Stop moving and discard buffer. STOPPED

ABORT Stop moving, disable all motors, reset all heaters and GPIO. STOPPED

DISCARD Discard a part of the queued buffers without stopping the current move.

GETPIN Read current state of a GPIO pin. PIN

(asynchronous) Buffer has been completed. DONE

(asynchronous) Buffer has been completed and no next buffer is available. UNDERRUN

(asynchronous) ADC has been measured. ADC

(asynchronous) Limit switch has been triggered. LIMIT

(asynchronous) Machine has been deactivated due to timeout. TIMEOUT

(asynchronous) The value of an input pin has changed. PINCHANGE

Table 4: Supported Commands, Function and Response.

Wijnen et al: Free and Open-source Control Software for 3-D Motion and Processing Art. e2, p.  9 of 12

For that reason, every axis stores the distance to move
for the current segment, and for the next segment. After
filling those values, the speeds F0 and F1 are limited to
what the axes are set to allow. Then the position where the
curved connection should start is computed and finally all
variables are filled with their values.

Probing
For 3-D printing and most other applications, the machine
can be calibrated once with the assumption that the sur-
face is flat and horizontal and it does not require recalibra-
tion. However, for milling PCB circuits, it is very important
that the distance into the surface is tightly controlled.
For this purpose, Franklin supports probing the surface
before running a job, and using the measured probe map
to correct for deviations from the horizontal flat ideal.
This can also be used for example to print on top of com-
plex geometries or to repair products.

Scripting
The above describes how Franklin is useful for controlling
a standalone 3-D printer or other CNC machine. However,
In a scientific environment a machine is normally part of a
larger setup, rather than only a standalone 3-D printer or
CNC machine. Franklin allows tight integration with the
rest of the setup by supporting an extension to G-code,
which allows running system commands. This can be used
to control other parts of the setup, for example to record
an image with a camera. Because running system com-
mands is a security risk, this feature is disabled by default
and it cannot be enabled from scripts or browsers, only at
startup using a configuration file or commandline switch.

G-code does not support input other than waiting for
a button. Instead, the websockets interface allows direct
control over the printer without using G-code. Using this
interface, a script can generate a movement pattern in real
time. For example, when a camera is connected as a tool,
a script could use the images from it and continuously
move it to keep a moving specimen centered in the field
of view and in focus.

Quality control
All compiler warnings are enabled for both Franklin
Firmware and the Franklin C Driver. Stack protection was
disabled because the AVR platform does not support it.
Valgrind [25] was used to find buffer overflows and use of
uninitialized variables in the Franklin C Driver.

Franklin has been used extensively on a variety of
devices, ranging from a 1-dimensional syringe pump to
3-dimensional printers. Firebug [26] was used to find
errors in the HTML and Javascript. Franklin Server delivers
web pages written in HTML 5 and Javascript (Ecma 262).
Care has been taken to follow the standards; no browser
extensions have been used.

Franklin has been used successfully on a variety of dif-
ferent machines listed above. In addition, Franklin has
been used in conjunction with a metal inert gas (MIG)
weld-based 3-D printer to develop substrate release mech-
anisms for 3-D printed parts [23]. Traditionally, metal 3-D
printed parts must be removed from a print substrate

with the use of saws or other machining equipment.
This removal step is undesirable as it results in excessive
material waste and has additional associated time and
cost requirements. In order to evaluate possible substrate
release mechanisms, Franklin was used to print aluminum
lap shear test specimens on aluminum and steel print sub-
strates. This study observed that low-cost options, such as
boron nitride coatings, and no-cost options, such as print-
ing aluminum on steel substrates, minimized the amount
of force required to remove metal specimens from a print
substrate.

(2) Availability
Operating system
Franklin has been designed for and tested on Debian
GNU/Linux [27], on i386, amd64 (PC) and armhf
(Raspberry Pi [28] and Beaglebone Black [29]) architec-
tures. It should work on any other GNU/Linux system
and possibly other Unix-based systems. The packages
have been built on the latest stable (jessie, or Debian 8)
and unstable versions, and using backports [30] with
some packages from jessie, also on oldstable (wheezy,
or Debian 7).

Additional system requirements
Franklin is only useful if there is hardware connected to
control. It does not have any other requirements.

Dependencies
•	 Python-fhs [31]: module for reading and writing files

in the proper place according to the Filesystem Hier-
archy Standard [32]

•	 Python-network [33]: module for using network con-
nections, including SSL.

•	 Python-websockets [34]: module for hosting a web
server that can communicate using websockets.

List of contributors
Bas Wijnen (code development).

Software location
Archive

Name: Purl.org
�Persistent identifier: http://purl.org/NET/mtu-most/
franklin
�License: GNU Affero General Public License, version 3
or later.
Publisher: Michigan Technological University.
Date published: 09/06/2013.

Code repository
Name: GitHub
Identifier: https://github.com/mtu-most/franklin
�License: GNU Affero General Public License, version 3
or later.
Date published: 09/06/2013.

Language
All code, comments and documentation are in American
English.

http://Purl.org
http://purl.org/NET/mtu-most/franklin
http://purl.org/NET/mtu-most/franklin
https://github.com/mtu-most/franklin

Wijnen et al: Free and Open-source Control Software for 3-D Motion and ProcessingArt. e2, p.  10 of 12

Figure 3: Schematic representation of how the move comprising a segment is prepared in Franklin.

Wijnen et al: Free and Open-source Control Software for 3-D Motion and Processing Art. e2, p.  11 of 12

(3) Reuse potential
In its current state, Franklin can be used for controlling
3-D printers and other manufacturing machines to pro-
duce research-grade equipment. Such equipment can also
be controlled with Franklin.

While the web interface is targeted at 3-D printers and
similar machines, the code is written in a way that makes it
easy to design an alternative interface. For example, a syringe
pump could be controlled with an interface that allows
programming a sequence of flows in the way that users of
syringe pumps expect. Such a program would use the web-
sockets interface of Franklin to control the hardware, while
presenting the user with an interface that is more appropri-
ate for the application than the default CNC interface.

Because it is free software users can improve Franklin
and the hardware to fit their requirements. Franklin is in
active development and the developer can be contacted
through github.

Possible improvements, which are considered or being
worked on include:

•	 G-code parsing is presently time consuming and
processor intensive. Performance can be improved
through the use of a compiled language such as C++
instead of Python.

•	 One-click printing support like that common for
2-D printers would vastly improve ease-of-use.
This functionality is a logical extension to com-
mon 3-D modeling packages (Blender, OpenSCAD,
FreeCAD, etc.) and even web browsers e.g. when
browsing objects hosted on 3-D printer aggregate
sites such as Youmagine.com, 3dprint.nih.gov or
Thingiverse.com.

•	 Running a G-code converter (a slicer for 3-D models)
as part of Franklin would allow users to send model
files directly to Franklin, again improving ease-of-use.
(This is a requirement for the previous point, but is
also a useful feature in itself.)

•	 Handling a microcontroller reset or loss of power on
the entire system, including the host computer would
be useful for those using 3-D printers in the develop-
ing world, where power is less reliable. It would also
be useful when using very large 3-D printers, such as
the Gigabot, which print for many hours to produce
a single object.

•	 Because Franklin parses G-code before running it,
and because it does this on a relatively powerful com-
puter, it has the option to thoroughly analyze it and
take action based on the relatively distant future.

•	 The BeagleBone contains all the features that are
needed for the microcontroller and the host. It would
be possible to use just the BeagleBone for the entire
control system.

Conclusions
Firmware known as Franklin was developed to mitigate
limitations associated with other CNC and 3-D printer con-
trol systems. Franklin was successfully demonstrated on a
wide range of RepRap-derived devices: Mendel RepRap,
Delta RepRap, Quad Delta RepRap, OS laser welder, PCB

micromill and the open source metal 3-D printer. Franklin
demonstrated the ability to support the maker movement
with low-cost open-source control of three dimensional
additive and subtractive fabrication as well as scientific
analytical equipment. Low-cost RepRap 3-D printers are
being taken more seriously in the scientific and industrial
worlds. Franklin improves upon this by allowing more
functionality and better integration with new or existing
systems.

Competing Interests
The authors declare that they have no competing interests.

Acknowledgments
The authors would like to acknowledge valuable discus-
sions with Lars Pötter, and Markus Hitter on the RepRap
mailing list, reprap-dev@lists.reprap.org.

References
  1.	Jones, R, Haufe, P, Sells, E, Iravani, P, Olliver, V,

Palmer, C and Bowyer, A 2011 RepRap–the replicat-
ing rapid prototyper. Robotica, 29(01): 177–191. DOI:
http://dx.doi.org/10.1017/S026357471000069X

  2.	Sells, E, Smith, Z, Bailard, S, Bowyer, A and Olliver, V
2009 RepRap: The Replicating Rapid Prototyper: Maxi-
mizing Customizability by Breeding the Means of Pro-
duction. Handbook of Research in Mass Customization
and Personalization.

  3.	Bowyer, A 2014 3D Printing and Humanity’s First Im-
perfect Replicator. 3D Printing and Additive Manufac-
turing, 1: 4–5.

  4.	Pronterface, Pronsole, and Printcore – Pure Python 3d
printing host software, https://github.com/kliment/
Printrun

  5.	Cura download page, http://software.ultimaker.com
  6.	Octoprint 3-D printer controller, http://octoprint.org
  7.	Pacemaker, A host-client-system to control 3d

printers, CNC milling or laser cutters, https://
github.com/JustAnother1/Pacemaker

  8.	Wohlers, T T 2013 Wohlers Report 2013: Additive
Manufacturing and 3D Printing State of the Industry:
Annual Worldwide Progress Report.

  9.	Pearce, J M 2012 Building research equipment with free,
open-source hardware. Science, 6100: 1303–1304.
DOI: http://dx.doi.org/10.1126/science.1228183. PMid:
22984059.

10.	Pearce, J M 2014 Open-Source Lab: How to Build Your
Own Hardware and Reduce Research Costs. Elsevier.

11.	Ventola, C L 2014 Medical Applications for 3D Print-
ing: Current and Projected Uses. Pharmacy and Thera-
peutics, 10: 704.

12.	Wijnen, B, Hunt, E J, Anzalone, G C and Pearce, J M
Open-source Syringe Pump Library. PLoS ONE, 9:
e107216. DOI: http://dx.doi.org/10.1371/journal.
pone.0107216. PMid: 25229451; PMCid: PMC4167991.

13.	Drescher, P, Spath, S and Seitz, H 2014 Fabrication
of biodegradable, porous scaffolds using a low–cost
3D printer. International Journal of Rapid Manufac-
turing, 2: 140–147. DOI: http://dx.doi.org/10.1504/
IJRAPIDM.2014.066035

http://Youmagine.com
http://3dprint.nih.gov
http://Thingiverse.com
mailto:reprap-dev@lists.reprap.org
http://dx.doi.org/10.1017/S026357471000069X
https://github.com/kliment/Printrun
https://github.com/kliment/Printrun
http://software.ultimaker.com
http://octoprint.org
https://github.com/JustAnother1/Pacemaker
https://github.com/JustAnother1/Pacemaker
http://dx.doi.org/10.1126/science.1228183
http://dx.doi.org/10.1371/journal.pone.0107216
http://dx.doi.org/10.1371/journal.pone.0107216
http://dx.doi.org/10.1504/IJRAPIDM.2014.066035
http://dx.doi.org/10.1504/IJRAPIDM.2014.066035

Wijnen et al: Free and Open-source Control Software for 3-D Motion and ProcessingArt. e2, p.  12 of 12

14.	King, D L, Babasola, A, Rozario, J and Pearce, J M
2014 Mobile Open-Source Solar-Powered 3-D Printers
for Distributed Manufacturing in Off-Grid Communi-
ties. Challenges in Sustainability, 1: 18–27. DOI: http://
dx.doi.org/10.12924/cis2014.02010018

15.	Pearce, J M, Blair, C M, Laciak, K J, Andrews, R,
Nosrat, A and Zelenika-Zovko, I 2010 3-D printing of
open source appropriate technologies for self-directed
sustainable development. Journal of Sustainable
Development, 4: 17. DOI: http://dx.doi.org/10.5539/
jsd.v3n4p17

16.	Birtchnell, T and Hoyle, W 2014 3D Printing for
Development in the Global South: The 3D4D Chal-
lenge, Palgrave Macmillan. DOI: http://dx.doi.org/
10.1057/9781137365668

17.	Franklin, 3-D printer and CNC controller, https://
github.com/mtu-most/franklin

18.	Arduino prototyping platform, http://www.arduino.cc/
19.	Wittbrodt, B T, Glover, A G, Laureto, J, Anzalone, G C,

Oppliger, D, Irwin, J L and Pearce, J M 2013 Life-
cycle economic analysis of distributed manufacturing
with open-source 3-D printers. Mechatronics, 6:
713–726. DOI: http://dx.doi.org/10.1016/j.mechatronics.
2013.06.002

20.	Irwin, J L, Pearce, J M, Oppliger, D and Anzalone, G C
2014 The RepRap 3-D Printer Revolution in STEM
Education. 121st ASEE Annual Conference and
Exposition, Indianapolis, IN. Paper ID #8696. Available at
http://www.asee.org/file_server/papers/attachment/
file/0004/4989/asee_reprap_paper_final1.pdf

21.	Anzalone, G C, Wijnen, B and Pearce, J M 2015
Multi-Material Additive and Subtractive Prosumer

Digital Fabrication with a Free and Open-source
Convertible Delta RepRap 3-D Printer. Rapid Prototyp-
ing (in press).

22.	Anzalone, G C, Zhang, C, Wijnen, B, Sanders, P G
and Pearce, J M 2013 A low-cost open-source metal
3-D printer. IEEE Access, 1: 803–810. DOI: http://
dx.doi.org/10.1109/ACCESS.2013.2293018

23.	Haselhuhn, A S, Gooding, E J, Glover, A G,
Anzalone, G C, Wijnen, B, Sanders, P G and Pearce, J M
2014 Substrate release mechanisms for gas metal arc
weld 3-D aluminum metal printing. 3-D Printing and
Additive Manufacturing, 1(4): 204–209.

24.	Hamming, R W 1950 Error detecting and error
correcting codes. Bell System technical journal, 2:
147–160. DOI: http://dx.doi.org/10.1002/j.1538-7305.
1950.tb00463.x

25.	Valgrind instrumentation framework for building
dynamic analysis tools, http://valgrind.org

26.	Firebug web development tool, http://getfirebug.com
27.	Debian – The universal operating system, https://

www.debian.org
28.	Raspberry Pi, http://www.raspberrypi.org
29.	BeagleBone Black, http://beagleboard.org
30.	Debian Backports, http://backports.debian.org
31.	Python-fhs, https://github.com/wijnen/python-fhs
32.	Filesystem Hierarchy Standard, http://www.

linuxfoundation.org/tags/filesystem-hierarchy-
standard

33.	Python-network, https://github.com/wijnen/python-
network

34.	Python-websockets, https://github.com/wijnen/python-
websockets

How to cite this article: Wijnen, B, Anzalone, G C, Haselhuhn, A S, Sanders P G and Pearce, J M 2016 Free and Open-source
Control Software for 3-D Motion and Processing. Journal of Open Research Software, 4: e2, DOI: http://dx.doi.org/10.5334/
jors.78

Submitted: 12 May 2015 Accepted: 06 January 2016 Published: 27 January 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://dx.doi.org/10.12924/cis2014.02010018
http://dx.doi.org/10.12924/cis2014.02010018
http://dx.doi.org/10.5539/jsd.v3n4p17
http://dx.doi.org/10.5539/jsd.v3n4p17
http://dx.doi.org/10.1057/9781137365668
http://dx.doi.org/10.1057/9781137365668
https://github.com/mtu-most/franklin
https://github.com/mtu-most/franklin
http://www.arduino.cc/
http://dx.doi.org/10.1016/j.mechatronics.2013.06.002
http://dx.doi.org/10.1016/j.mechatronics.2013.06.002
http://www.asee.org/file_server/papers/attachment/file/0004/4989/asee_reprap_paper_final1.pdf
http://www.asee.org/file_server/papers/attachment/file/0004/4989/asee_reprap_paper_final1.pdf
http://dx.doi.org/10.1109/ACCESS.2013.2293018
http://dx.doi.org/10.1109/ACCESS.2013.2293018
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://valgrind.org
http://getfirebug.com
https://www.debian.org
https://www.debian.org
http://www.raspberrypi.org
http://beagleboard.org
http://backports.debian.org
https://github.com/wijnen/python-fhs
http://www.linuxfoundation.org/tags/filesystem-hierarchy-standard
http://www.linuxfoundation.org/tags/filesystem-hierarchy-standard
http://www.linuxfoundation.org/tags/filesystem-hierarchy-standard
https://github.com/wijnen/python-network
https://github.com/wijnen/python-network
https://github.com/wijnen/python-websockets
https://github.com/wijnen/python-websockets
http://dx.doi.org/10.5334/jors.78
http://dx.doi.org/10.5334/jors.78
http://creativecommons.org/licenses/by/4.0/

