
Rackauckas, C and Nie, Q 2017 DifferentialEquations.jl – A Performant and
Feature-Rich Ecosystem for Solving Differential Equations in Julia. Journal
of Open Research Software, 5: 15, DOI: https://doi.org/10.5334/jors.151

Journal of
open research software

SOFTWARE METAPAPER

DifferentialEquations.jl – A Performant and Feature-Rich
Ecosystem for Solving Differential Equations in Julia
Christopher Rackauckas and Qing Nie
Department of Mathematics, University of California-Irvine, Irvine, CA, 92697, US
Corresponding author: Christopher Rackauckas (accounts@chrisrackauckas.com)

DifferentialEquations.jl is a package for solving differential equations in Julia. It covers discrete equations
(function maps, discrete stochastic (Gillespie/Markov) simulations), ordinary differential equations,
stochastic differential equations, algebraic differential equations, delay differential equations, hybrid
differential equations, jump diffusions, and (stochastic) partial differential equations. Through extensive use
of multiple dispatch, metaprogramming, plot recipes, foreign function interfaces (FFI), and call-overloading,
DifferentialEquations.jl offers a unified user interface to solve and analyze various forms of differential
equations while not sacrificing features or performance. Many modern features are integrated into the
solvers, such as allowing arbitrary user-defined number systems for high-precision and arithmetic with
physical units, built-in multithreading and parallelism, and symbolic calculation of Jacobians. Integrated
into the package is an algorithm testing and benchmarking suite to both ensure accuracy and serve as an
easy way for researchers to develop and distribute their own methods. Together, these features build a
highly extendable suite which is feature-rich and highly performant.

Keywords: Julia; ordinary differential equations; stochastic differential equations; partial differential
equations; multiple dispatch; metaprogramming; high-precision; multithreading
Funding statement: This work was partially supported by NIH grants P50GM76516 and R01GM107264
and NSF grants DMS1562176 and DMS1161621. This material is based upon work supported by the
National Science Foundation Graduate Research Fellowship under Grant No. DGE-1321846, the National
Academies of Science, Engineering, and Medicine via the Ford Foundation, and the National Institutes
of Health Award T32 EB009418. Its contents are solely the responsibility of the authors and do not
necessarily represent the official views of the NIH.

(1) Overview
1 Introduction
Differential equations are fundamental components
of many scientific models; they are used to describe
large-scale physical phenomena like planetary systems
[10] and the Earth’s climate [12, 18], all the way to smaller
scale biological phenomena like biochemical reactions
[30] and developmental processes [27, 7]. Because of
the ubiquity of these equations, standard sets of solvers
have been developed, including Shampine’s ODE suite for
MATLAB [25], Hairer’s Fortran codes [8], and the Sundials
CVODE solvers [11].

However, these software packages contain many
limitations which stem from their implementation and
the time when they were developed. Since the time of their
inception, many other forms of differential equations have
become commonplace tools not only for mathematicians,
but throughout the sciences. Stochastic differential equa-
tions (SDEs), have become more commonplace not only
in mathematical finance [23, 5], but also in biochemical

[4, 13] and ecological models. Delay differential equations
have become a ubiquitous tool for modeling phenomena
with natural delays as seen in Neuroscience [3, 22] and
control theory [24]. However, a user who is familiar with
standard ODE tools has to “leave the box” to find a new
specialized package to handle these kinds of differential
equations, or write their own solver scripts [9]. Also, when
many of these methods were implemented the standard
computer was limited by the speed of the processor. These
days, most processors are multi-core and many computers
contain GPGPU [1] or Xeon Phi [17, 6] acceleration cards
and thus taking advantage of the ever-present parallelism
is key to achieving good performance.

Other design limitations stem from the program-
ming languages used in the implementation. Many of
these algorithms, being developed in early C/Fortran,
do not have abstractions for generalized array formats.
In order to use these algorithms, one must provide the
solver with a vector. In cases where a matrix or a higher
dimensional tensor are the natural representation of the

https://doi.org/10.5334/jors.151
mailto:accounts@chrisrackauckas.com

Rackauckas and Nie: DifferentialEquations.jlArt. 15, p. 2 of 10

differential equation, the user is required to transform
their equation into a vector equation for use in these
solvers. Also, these solvers are limited to using 64-bit
floating point calculations. The numerical precision limits
their use in high-precision applications, requiring special-
ized codes when precision lower than 10–16 is required.
Lastly, many times these programs are interfaced via a
scripting language where looping is not optimized and
where “vectorized” codes provide the most efficient solu-
tion. However, vectorized coding in the style of MATLAB
or NumPy results in temporary allocations and can lack
compiler optimizations which require type inference. This
increases the computational burden of the user-defined
functions which degrades the efficiency of the solver.

The goal of DifferentialEquations.jl is build off of the
foundation created by these previous differential equa-
tion libraries and modernize them using Julia. Julia is a
scripting language, used in-place of languages like R,
Python, MATLAB, but offers the performance one would
associate with low-level compiled languages. This allows
users to start prototypes in Julia, but also solve their
large-scale models within the same language, instead of
resorting to two language solutions when performance
is needed. The language achieves this goal by extensive
utilization of multiple dispatch and metaprogramming
to design a language that is both easy for a compiler
to understand and easy for a programmer to use [2].
DifferentialEquations.jl builds off of these design princi-
ples to arrive at a fast, feature-rich, and highly extendable
differential equations suite which is easy to use.

We start by describing the innovations in usability. In
Section 1.1 we show how multiple dispatch is used to
consolidate the functions the user needs to into sim-
ple descriptive commands like solve and plot. Since
these commands are used for all forms of differential
equations, the user interface is unified in a manner that
makes it easy for a user to explore other types of models.
Then in Section 1.2 we show how metaprogramming is
used to further simplify the user API, allowing the user
to define a function in a “mathematical format” which is
automatically converted into the computationally-effi-
cient encoding. After that, we describe how the internals
were designed in order to be both feature-filled and highly
performant. In Section 1.3 we describe the package struc-
ture of DifferentialEquations.jl and how the Base libraries,
component solvers, and add-on packages come together
to provide the full functionality of DifferentialEquations.
jl. In Section 1.4 we describe how multiple dispatch is used
to write a single generic method which compiles into spe-
cialized functions dependent on the number types given
to the solver. We show how this allows for the solvers to
both achieve high performance while being compatible
with any Julia-defined number system which implements
a few basic mathematical operations, including fast high
and intermediate precision numbers and arithmetic with
physical units. In Section 1.5 we describe the experimen-
tal within-method multi-threading which is being used
to further enhance the performance of the methods,
and the multi-node parallelism which is included for
performing Monte Carlo simulations of stochastic

models. We then discuss some of the tools which allows
DifferentialEquations.jl to be a good test suite for the fast
development and deployment of new solver algorithms,
and the tools provided for performing benchmarks. Lastly,
we describe the current limitations and future develop-
ment plans.

1.1 A Unified API Through Multiple Dispatch
DifferentialEquations.jl uses multiple dispatch on
specialized types to arrive at a unified user-API for the dif-
ferent types of equations. To use the package, one follows
the steps:

1.	 Define a problem.
2.	 Solve the problem.
3.	 Plot the solution.

This standardization of the API makes complicated solvers
accessible to less programming-inclined individuals,
giving a good framework for future development and
allows for the latest research in numerical differential
equations to be utilized without complications.

1.1.1 Solving ODEs
To define a problem, a user must call the constructor for
the appropriate problem object. Since ordinary differential
equations (ODEs) are represented in the general form as

0(,), (0) ,
du

f t u u u
dt

= = � (1)

the ODEProblem is defined by specifying a function f
and an initial condition u0. For example, we can define the
linear ODE using the commands:
using DifferentialEquations
f(t,y) = 0.5y
u0 = 1.5
timespan = (0.0,1.0) # Solve from time = 0 to
time = 1
prob = ODEProblem(f,u0,timespan)

Many other examples are provided in the documentation1
and the Jupyter notebook tutorials in DiffEqTutorials.jl2
(for use with Julia, see IJulia.jl3). To solve the ODE, the user
can simply call the solve command on the problem:
sol = solve(prob) # Solves the ODE

By using a dispatch architecture on AbstractArrays
and using the array-defined indexing functional-
ity provided by Julia (such as eachindex(A)),
DifferentialEquations.jl accepts problems defined on
arrays of any size. For example, one can define and solve
a system of equations where the dependent variable u is a
matrix as follows:
A = [1. 0 0 –5
	 4 –2 4 –3
	 –4 0 0 1
	 5 –2 2 3]
u0 = rand (4,2)
f(t,u) = A*u
prob = ODEProblem(f,u0,timespan)
sol = solve(prob)

For most other packages, one would normally have to
define u as a vector and rewrite the system of equations in
the vector form. However, by allowing arbitrary problem

Rackauckas and Nie: DifferentialEquations.jl Art. 15, p. 3 of 10

sizes, DifferentialEquations.jl allows the user to specify
problems in the natural format and solve directly on any
array of numbers. This can be helpful for problems like
discretizations of partial differential equations (PDEs)
where the matrix format matches some underlying struc-
ture, and could result in a denser formulation.

The solver returns a solution object which holds all of
the information about the solution. Dispatches to array
functions are provided on the sol object, allowing for
the solution object act like a timeseries array. In addition,
high-order efficient interpolations are lazily constructed
throughout the solution (by default, a feature which can
be turned off) and the sol object’s call is overloaded with
the interpolating function. Thus the solution object can
both be used as an array of the solution values, and as a
continuous approximation given by the numerical solu-
tion. The syntax is as follows:
sol[i] # ith solution value
sol.t[i] # ith timepoint
sol(t) # Interpolated solution at time t

The solution can be plotted using the provided plot
recipes through Plots.jl4. The plot recipes use the solver
object to build a default plot which is customizable using
any of the commands from the Plots.jl package, and can
be plotted to any plotting backend provided by Plots.jl.
For example, we can by default plot to the PyPlot.jl5 back-
end (a Julia wrapper for matplotlib6) via the command:
plot(sol)

These defaults are deliberately made so that a standard user
does not need to dig further into the manual and understand
the differences between all of the algorithms. However, an
extensive set of functionality is available if the user wishes.
All of these functions can be modified via additional argu-
ments. For example, to change the solver algorithm to a

highly efficient Order 7 method due to Verner [29], set the
line width in the plot to 3 pixels, and add some labels to the
plot, one could instead use the commands:
sol = solve(prob, Vern7()) # Unrolled Verner 7th
Order Method
plot(sol,linewidth=3,xlabel=“t”,ylabel=“u(t)”)

The output of this command is shown in Figure 1.
Note that the output is automatically smoothed using
10*length(sol) equally spaced interpolated values
through the timespan.

Lastly, these solvers tie into Julia integrated develop-
ment environments (IDEs) to further enhance the ease of
use. Users of the Juno IDE [16] are equipped with a pro-
gressbar and time estimates to monitor the progress of
the solver. Additionally, all of the DifferentialEquations.jl
functions are thoroughly tested and documented with the
Jupyter notebook system [19], allowing for reproducible
exploration.

1.1.2 Solving SDEs
By using multiple-dispatch, the same user API is offered
for other types of equations. For example, if one wishes to
solve a stochastic differential equation (SDE):

(,) (,) ,t t t tdX f t X dt g t X dW= + � (2)

then one builds an SDEProblem object by specifying
the initial condition and now the two functions, f and g.
However, the rest of the usage is the same: simply use the
solve and plot functions. To extend the previous example
to have multiplicative noise, the code would be:

g(t,u) = 0.3u
prob = SDEProblem(f,g,u0,timespan)
sol = solve(prob)
plot(sol)

Figure 1: Example of the ODE plot recipe. This plot was created using the PyPlot backend through Plots.jl. Shown is the
solution to the 4 × 2 ODE with f(t,u) = Au where A is given in the code. Each line corresponds to one component of
the matrix over time.

Rackauckas and Nie: DifferentialEquations.jlArt. 15, p. 4 of 10

While this user interface is simple, the default methods
these algorithms can call are efficient high-order solvers
with adaptive timestepping [21]. These methods tie into
the plotting functionality and IDEs in the same manner as
the ODE solvers, making it easy for users to explore stochas-
tic modeling without having to learn learn a new interface.

1.1.3 Solving (Stochastic) PDEs
Again, the same user API is offered for the available stochastic
PDE solvers. Instead, one builds a HeatProblem object
which dispatches to algorithms for solving (Stochastic)
PDEs. An example using the previously defined functions is:
T = 5
dx = 1/2^(1)
dt = 1/2^(7)
fem_mesh = parabolic_squaremesh([0 1 0 1],dx,
dt,T,:neumann)
prob = HeatProblem(f,mesh,σ=σ)
sol = solve(prob)

Additional keyword arguments can be supplied to
HeatProblem to specify boundary data and initial con-
dtions. Notice that the main difference is now we must
specify a space-time mesh (and boundary conditions as
optional keyword arguments). Again, the same plotting
and analysis commands apply to the solution object sol
(where now the plot dispatch is to a trisurf plot).

1.2 Enhanced Performance and Readability Through
Macros
1.2.1 A Macro-Based Interface
Most differential equations packages require that the user
understands some details about the implementation of the
library. However, the DifferentialEquations.jl ecosystem
implements various Domain-Specific Languages (DSLs)
via macros in order to give more natural options for
defining mathematical constructs. In this section we will
demonstrate the DSL for defining ODEs. For demonstra-
tions related to other types of equations, please see the
documentation.

The famous Lorenz system is mathematically defined as

		 ()dx
y x

dt
σ= − � (3)

		 ()dy
x z y

dt
ρ= − − � (4)

		
dz

xy z
dt

β= − � (5)

A user must re-write this function in a “computer friendly
format”, defining u=[x;y;z] as a vector and writing the
equation in terms of this vector. The format for ODE.jl,
which is similar to other scripting languages like SciPy or
MATLAB, is as follows:

f = (t,u,du) –> begin
du[1] = 10*(u[2]-u[1])
du[2] = u[1]*(28-u[3]) - u[2]
du[3] = u[1]*u[2] - 8/3*u[3]
end

While this format is accepted by DifferentialEquations.
jl, additional usability macros are provided which will

automatically translate user input from a more math-
ematical format. For ODEs, @ode_def is provided which
allows the user to define the same ODE as follows:

f = @ode_def Lorenz begin
dx = σ*(y-x)
dy = x*(ρ-z) - y
dz = x*y - β*z
end σ=>10. ρ=>28. β=(8/3)

Since Julia allows for the use of Unicode within code,
this format matches the style one would expect to see in
a TeX’d publication. The macro takes in this definition,
finds the values for the left-hand side of the form “d__”,
and uses a dictionary in order to find/replace these val-
ues to write a function which is in the format of the
other scripting language libraries. Thus the translation
to a vector system can be done by DifferentialEquations.
jl, allowing the users to have more readable scripts while
not sacrificing performance. In addition, the macro pro-
duces a function which updates an input du in-place as
the output. This detail can be hard for non-programmers
to understand but is required for achieving fast solutions
since otherwise every function call requires an array
allocation.

1.2.2 Explicit Parameters
A unique feature from this form of function defini-
tion is that the parameters are built into the function
type itself. The actual implementation involves creating
a type Lorenz with fields for the parameters (inlining
parameters defined with = instead of => during compila-
tion). Then the type is set to have its call overloaded by
the standard f(t,u,du) function signature, effectively
acting like the appropriate function. However, the param-
eters are still accessible via the type fields, for example
f.a or the overloaded f[:a]. This allows for sensitivity
analysis, bifurcation diagrams, and parameter estimations
to be computed using the same function, allowing for this
infrastructure to extend far beyond the domain of differ-
ential equations solvers.

1.2.3 Enhanced Performance Through Symbolic Calculations
Also, since the code is analyzed by the program at the
expression level, silent optimizations are able to be
performed. For example, during the construction of the
function, the code is transformed into a symbolic form
for use in the high-performance CAS SymEngine.jl7 [28],
where the Jacobian is calculated and an in-place function
for its computation is created. In addition, the symbolic
expression is inverted, allowing for stiff solvers which
require inverting Jacobians to be written as directly com-
puted matrices and matrix multiplications.

1.3 The Distributed Structure of
DifferentialEquations.jl
The full functionality of DifferentialEquations.jl is
defined in the more than 40 packages in the JuliaDiffEq
Github organization8. It splits the main packages into
three parts: the Base libraries, the component solv-
ers, and the add-on packages. DifferentialEquations.
jl is a metapackage which utilizes all of these packages

Rackauckas and Nie: DifferentialEquations.jl Art. 15, p. 5 of 10

together and adds default behavior to give a cohesive
ecosystem.

1.3.1 Building the solve function from DiffEqBase.jl and
Component Solvers
DifferentialEquations.jl is designed to use multiple-
dispatch in order to allow for the different solver meth-
ods to be defined in separate packages. In Julia, the
command:

solve(prob,Algorithm())

calls a different “method” depending on the type of
Algorithm. This function is called the “common solve inter-
face”. The actual method that it calls does not need to be in the
same package where the original function is defined. Using
this design, the central package to the DifferentialEquations.
jl ecosystem is DiffEqBase.jl9. DiffEqBase.jl defines the
abstract type hierarchy, along with the problem and solution
types, and the shared components. All of the component
solver packages have a dependency on DiffEqBase.jl and add
a method to this solve function. For example, for ODEs, the
current list of component solvers is:

•	 	OrdinaryDiffEq.jl10

•	 	Sundials.jl11

•	 	ODE.jl12

•	 	ODEInterface.jl13

•	 	LSODA.jl14

Some of the packages, like OrdinaryDiffEq.jl and ODE.jl,
are native Julia libraries, whereas Sundials.jl, ODEInterface.
jl, and LSODA.jl are all interfaces to popular C and Fortran
codes. Through this interface, users can switch between
libraries by switching only the algorithm choice, and new
packages can extend what’s available as needed. Note
that the information in this structure is unidirectional:
anyone can add a new package of solvers to the solve
function by adding a dependency on DiffEqBase.jl without
DiffEqBase.jl needing to be changed. This means that pri-
vate projects, such as those which contain private research
or proprietary methods, can extend this interface without
being forced to edit the public DiffEqBase.jl repository.
This same setup is then applied to each of the other types
of equations. For full details on the current list of solv-
ers methods that are available, along with the available
methods for the other types of equations, please see the
documentation. Note that from this modular structure,
developers of other packages can use the functional-
ity of DifferentialEquations.jl without having to depend
on the entirety of the differential equations suite. For
example, one can build an add-on package which uses
the native ODE solvers and only include DiffEqBase.jl and
OrdinaryDiffEq.jl as dependencies. This reduces the com-
plexity associated with using the functionality, and helps
developers keep dependencies as lean as possible.

1.3.2 The Add-on Packages
The add-on packages are a set of functionality which use the
common solve interface. For example, parameter estimation
functionality is provided by defining algorithms which only

use the abstraction of the solve function, and allows the
user to pass in the algorithm. Therefore these algorithms
are generic, supporting many different equation types and
internally able to use many different solver packages. Other
such add-on functionality includes parameter sensitivity
analysis, Monte Carlo parallelism functions, and uncer-
tainty quantification. For more information on the current
add-on packages, please consult the documentation.

1.4 Multiple Dispatch as a tool for Arbitrary
Numerics
Julia’s base library defines its standard numeric types,
Float64, Int64, etc., as concrete subtypes of the
abstract type Number. The implementation is contained
within Julia: using a concrete primative type as a
way to store numbers, and defining the operations such
as +,–, etc. for each pair of numbers using dispatch on
subtypes of Number. The result is that each number
type receives its own compiled function for each opera-
tion, resulting in performance which can be 1x with
C (as can be investigated via the @code_llvm and @
code_native macros). This design allows for users to
develop pure Julia packages which implement new num-
ber systems. DifferentialEquations.jl utilizes Julia’s mul-
tiple dispatch architecture to allow for fast performance
over these arbitrary numerical types. The design of the
integration schemes includes a wrapper over the integra-
tion loops which matches types (to ensure type-stability),
choosing the types for the problem by the user defined u0
(the initial condition) and timespan (i.e. separate types are
allowed for the dependent and independent variables). It
then calls a type-dependent integration function which
is optimized via JIT compilation for the numeric types
given to the function. Different dispatches are given for
subtypes of Number and AbstractArray since arrays are
mutable and heap allocated, meaning that when numbers
are treated directly instead of as arrays of size 1 a large
speedup can occur. This allows for the internal integration
algorithms to achieve C/Fortran speeds, while allowing
for the generic numerical types and the readability of
being in Julia itself. The following subsections highlight
two important examples.

1.4.1 Case 1: Arbitrary Precision Numerics
One advantage of this design beyond speed is that it
allows the user of DifferentialEquations.jl to use any type
which is a subclass of Number as the number type for
the equations. This includes not only the basic types like
Float64 and Int64, but also Rational and arbitrary pre-
cision BigFloats (based off of GNU MPFR). However,
even numeric types defined in packages (which imple-
ment +,–,/, and for optionally for adaptive timestepping,
sqrt) can be used within DifferentialEquations.jl. Some
examples which have been shown to work are ArbFloats.
jl15 (a library for faster high-precision numbers than MPFR
floats between 64 and 512 bits based on the Arb library of
Fredrik Johansson [14]) and DecFP.jl16 (an implementation
of IEEE 754–2008 Decimal Floating-Point Arithmetic).

The combination of high-performance number systems
with high order Runge-Kutta methods such as the Order

Rackauckas and Nie: DifferentialEquations.jlArt. 15, p. 6 of 10

14 methods due to Feagin allows for fast solving with high
accuracy. For an example showing this combination, see
the “Feagin’s Order 10, 12, and 14 methods” notebook in
the examples folder17.

1.4.2 Case 2: Unitful Numbers
This design also allows DifferentialEquations.jl to be
compatible with number systems which have physical
units. SIUnits.jl18 and Unitful.jl19 are packages which
have developed number implementations which have
units. Numbers defined by these packages automatically
constrain the equations to satisfy dimensional constraints.
For example, if one tries to add a quantity with units of
seconds with a quantity with units of Newtons, it will
throw an error. This is useful in fields like physics where
these dimensional analysis tools are used to check for cor-
rectness in equations. DifferentialEquations.jl was devel-
oped such that the internal solvers satisfy dimensional
constraints. Thus one can use unitful numbers like other
arbitrary number systems. The “Unit Checked Arithmetic
via Unitful” notebook in the examples folder20 describes
the usage of this feature. For example, we can solve an
ODE where the dependent variable is in terms of seconds
and the independent variable is in terms of Newtons via
the following equation:

using DifferentialEquations, Unitful
f = (t,y) -> 0.5*y
u = 1.5u“N”
prob = ODEProblem(f,u,(0.0u“s”,1.0u“s”))
sol = solve(prob,dt=(1/2^4)u“s”)

The attentive reader should realize that this will correctly
throw an error: the output of the function in an ODE must
be a rate, and therefore must have units of N/s in this exam-
ple. Unitful.jl will thus return an error notifying the user
that the dimensions are off by a unit of seconds. Instead,
the pleased physicists would modify the previous code by a
rate constant and use the following code instead:

f = (t,y) -> 0.5*y/3.0u“s”
u = 1.5u“N”
prob = ODEProblem(f,u,(0.0u“s”,1.0u“s”))
sol = solve(prob,dt=(1/2^4)u“s”)

This will produce an output whose units are in terms of
Newtons, and with time in terms of seconds.

1.5 Integrated Parallelism
1.5.1 Within-Method Multithreading
DifferentialEquations.jl also includes parallelism
whenever possible. One area where parallelism is cur-
rently being employed is via “within-method” parallel-
ism for Runge-Kutta methods. Using Julia’s experimental
multithreading, DifferentialEquations.jl provides a multi-
threaded version of the DP5 solver. Benchmarks using the
tools from Section 1.6 show that this can give a 30% non-
multithreaded algorithm for problem sizes ranging from
75 × 75 matrices to 200 × 200 matrices. For larger prob-
lems this trails off as more time is spent within the func-
tion evaluations, thus reducing the difference between the
methods. See the “Multithreaded Runge-Kutta Methods”
notebook21 in DiffEqBenchmarks.jl for the most up-to-
date results as this may change rapidly along with Julia’s
threading implementation.

1.5.2 Multi-Node Monte Carlo Simulations
Also, DifferentialEquations.jl provides methods for per-
forming parallel Monte Carlo simulations. Using Julia’s
pmap construct, one is able to specify for a problem to be
solved N times, and DifferentialEquations.jl will distribute
this automatically across multiple nodes of a cluster. A
vector of results along with summary statistics is returned
for the solution. This functionality has been tested on the
local UC Irvine cluster (using SGE) and the XSEDE Comet
cluster (using Slurm).

1.6 Development, Testing, and Benchmarking
DifferentialEquations.jl includes a suite specifically
designed for researchers interested in developing new
methods for differential equations (like the authors them-
selves). This includes functionality for easy integration of
new methods, extensive testing, and a benchmarking suite.

1.6.1 Development
The design of DifferentialEquations.jl allows for users
to add new integration methods by adding new dis-
patches. One way to add new methods is to simply cre-
ate a new package which extends the solve function of
DiffEqBase.jl as described in 1.3. Another way is to extend
the current open-source native Julia solvers on the com-
mon interface. Let’s take as an example the ODE solver
suite OrdinaryDiffEq.jl22, which contains the native Julia
methods developed in tandem with DifferentialEquations.
jl. The ODE solver works by setting up options and fix-
ing types, and then builds the integrator type and
enters the internal loop. All dispatchs on loop functions
are done by the algorithm/cache type. Thus to define a
new algorithm, one defines a new algorithm type which
subtypes the OrdinaryDiffEqAlgorithm type. This
will make solve plug into OrdinaryDiffEq.jl’s version of
solve. From there, a new dispatch for perform_step
needs to be added which performs the algorithm’s update
from un to un+1. For example, the Midpoint Method steps
as follows:
@inline function perform_step!(integrator,
						 cache::MidpointConstantCache,
						 f=integrator.f)
	 @unpack t,dt,uprev,u,k = integrator
	 halfdt = dt/2
	 k = integrator.fsalfirst
	 k = f(t+halfdt,uprev+halfdt*k)
	 u = uprev + dt*k
	 integrator.fsallast = f(t+dt,u) # For
				 interpolation, then FSAL’d
	 integrator.k[1] = integrator.fsalfirst
	 integrator.k[2] = integrator.fsallast
	 @pack integrator = t,dt,u
end

Additionally a new cache type must be developed for
holding the cache variables. By doing this, all of the func-
tionality of OrdinaryDiffEq.jl will be automatically applied
to the algorithm. Thus interpolated (dense) output, FSAL
optimizations (first-same-as-last, skipping an extra func-
tion evaluation), progress monitoring, event handling,
and integrator interfaces will be available. Additionally,
if an error estimator is given, the PI-contolled adaptive
timestepping will be enabled for the algorithm. For more
details, see the Developer Documentation23.

Rackauckas and Nie: DifferentialEquations.jl Art. 15, p. 7 of 10

1.6.2 Testing
The DifferentialEquations.jl suite includes a large number
of testing functions to ensure correctness of all of the algo-
rithms. Many premade problems with analytical solutions
are provided and convergence testing functionality is
included to be able to test the order of accuracy and plot
the results. All of the DifferentialEquations.jl algorithms
are tested using the Travis and AppVoyer Continuous
Integration (CI) testing services to ensure correctness.

1.6.3 Benchmarking
Lastly, a benchmarking suite is included to test the
efficiency of different algorithms. Two forms of
benchmarking are included: the Shootout and the
WorkPrecision. A Shootout solves using all of
the algorithms in a given setup and calculates an aver-
age time (over a user-chosen number of runs) and
error for each algorithm. The WorkPrecision and
WorkPrecisionSet additionally take in vectors of
tolerances and draw work-precision diagrams to compare
algorithms. Up to date benchmarks can be found in the
repository’s benchmarks folder24. These notebooks can be
opened to be run locally via the commands
using IJulia
notebook(dir=Pkg.dir(“DiffEqBenchmarks”)*“/
benchmarks”)

As of this publication, the benchmarks show that native
methods from OrdinaryDiffEq.jl (which were developed in
tandem with DifferentialEquations.jl) achieve an order of
magnitude speedup on nonstiff problems when achieving
the same error over the classic Hairer Runge-Kutta imple-
mentations and the ODE.jl implementations.

1.7 Limitations and Future Development Plans
While DifferentialEquations.jl already offers many new
features and high performance, the package is still under
heavy development and will be for the foreseeable future.
Currently, most of the methods for stiff equations are
wrapped methods (only the Rosenbrock with/without
local extrapolation, and the order 1/2 BDF methods
exist in native forms). While these methods, such as
CVODE (provided by Sundials.jl25) and radau (provided by
ODEInterface.jl26), are widely regarded standards for stiff
ODEs, by not being native Julia functions these algorithms
choices do not allow for the extra functionality such as
arbitrary precision and arithmetic with physical units
(these features require a pure-Julia implementation).
Instead, since these are the standard algorithms wrapped
in packages such as SciPy [15] and R’s deSolve [26], the
limitations of these wrapped solvers match the limitations
of other common libraries.

The native Julia methods have far less limitations
because they work on the general abstract types
AbstractArray and Number. For example, while
other packages are limited to non-distributed arrays and
thus must be able to fit the problem in the memory of one
computer or node, any user can define the input equation
using a DistrbutedArray from DistributedArrays.jl27,
Julia will automatically compile a new dispatch for the
solver commands to make use of the distributed structure.
In addition, the native Julia solvers of OrdinaryDiffEq.

jl allow one to swap out the linear and nonlinear solver
methods, allowing the users to parallel methods from
PETSc.jl28 and and GPU methods from packages like
CUSOLVER.jl29.

However, while the genericness of the implementation
makes it very flexible, one limitation of the design is that
the full extent of the compatibility is not able to be eas-
ily documented or known. The practice of “duck typing”
means that the generic functions are left open ended,
and functionality will work on available types depending
on whether certain traits or operations are defined. For
example, Julia-defined numbers systems are compatible
with the if certain operations (+,–,*,/) are defined. However,
different solver algorithms can have slightly different
compatibility requirements. Adaptive timestepping also
requires that the number system has a well-defined sqrt
function. Thus Rational numbers are compatible with
explicit methods, but not when adaptive timestepping is
enabled. Some of the stiff solvers require the ability to be
used in autodifferentiation via ForwardDiff.jl30 if the user
does not provide a function for calculating the Jocobian.
However, ForwardDiff.jl currently does not include com-
patibility with complex numbers. Errors for these issues
are only thrown at runtime. This leads to a combinatorial
explosion in the amount of details required to describe
the compatibility of each useful type with each method.
Finding a way to better document the compatibilities and
incompatibilities, as well as continuing to extend the com-
patibility, for this extended range of useful types is a long-
term goal.

Also, DifferentialEquations.jl is currently limited on
the types of PDEs it natively supports, and the mesh
generation tools are still in their infancy. To address these
issues and more, planned functionality includes (but is
not limited to):

•	 	Finite Difference Methods for common elliptic,
parabolic, and hyperbolic PDEs, including high order
methods for SPDEs

•	 	Highly parallel accelerated solvers using GPGPUs
and Xeon Phi cards (prototypes have already been
developed [20])

•	 	High order methods for stiff SDEs

Check the repository issues for the most up to date
roadmap.

1.8 Quality Control
Continuous Integration testing with the latest versions of
Julia on Mac, Linux, and Windows are provided via Travis
and AppVoyer. These tests check most of the features of
DifferentialEquations.jl, including the convergence of each
algorithm, the ability to plot, the number types used in the
computations, and more. Coveralls and Coverage badges
are provided on the repository for test coverage analysis. As
with other Julia packages, a user can check to see if these
functionalities are working on their local machine via the
command Pkg.test (“DifferentialEquations”). Benchmarks
in Jupyter notebooks are provided to test the differences
between the integrator implementations. Additionally, each
Base library, component solver, and add-on package contains

Rackauckas and Nie: DifferentialEquations.jlArt. 15, p. 8 of 10

its own set of tests for the functionality that it implements.
All have the same continuous integration setup.

Another method for quality control is user feedback.
DifferentialEquations.jl receives bug reports and feature
requests through the Julialang Discourse31, the Github
issues page32, and the JuliaDiffEq Gitter channel33. These
are tracked and as releases occur, are broadcasted to the
community using the JuliaDiffEq blog34.

(2) Availability
2.1 Operating system
DifferentialEquations.jl is CI tested on MacOSX and Linux
via Travis CI, and Windows via AppVoyer.

2.2 Programming language
Julia v0.5+

2.3 Dependencies
Dependencies are split into two groups. The direct
dependencies of DifferentialEquations.jl are the
packages of JuliaDiffEq which are built around the
common interface and developed in tandem with
DifferentialEquations.jl. The indirect dependencies are
the dependencies of the direct dependencies, which are
packages which are not actively developed as part of
JuliaDiffEq activity.

The direct dependencies of DifferentialEquations.jl are
the packages of JuliaDiffEq. These are:

•	 DiffEqBase.jl35

•	 StochasticDiffEq.jl36

•	 FiniteElementDiffEq.jl37

•	 DiffEqDevTools.jl38

•	 OrdinaryDiffEq.jl39

•	 AlgebraicDiffEq.jl40

•	 StokesDiffEq.jl41

•	 DiffEqParamEstim.jl42

•	 DiffEqSensitivity.jl43

•	 Sundials.jl44

•	 ODEInterfaceDiffEq.jl45

•	 ParameterizedFunctions.jl46

•	 DiffEqPDEBase.jl47

•	 DelayDiffEq.jl48

•	 DiffEqCallbacks.jl49

•	 DiffEqMonteCarlo.jl50

•	 DiffEqJump.jl51

•	 DiffEqFinancial.jl52

•	 DiffEqBiological.jl53

•	 MultiScaleArrays.jl54

Indirect dependencies include:

•	 RecipesBase.jl55

•	 Optim.jl56

•	 Parameters.jl57

•	 ForwardDiff.jl58

•	 IterativeSolvers.jl59

•	 GenericSVD.jl60

•	 Compat.jl61

•	 InplaceOps.jl62

•	 	SymEngine.jl63

All of these dependencies will automatically install upon
Pkg.add(“DifferentialEquations”). See the
REQUIRE files for the Julia packages for more information
on their specific dependencies.

Optional dependencies of DifferentialEquations.jl
include the additional solver packages:

•	 ODEInterface.jl64

•	 ODE.jl65

•	 LSODA.jl66

For information on how to install these libraries, see their
respective repositories.

2.4 List of contributors
•	 Christopher Rackauckas, Lead Developer of JuliaDiffEq
•	 Mauro Werder, contributions to DiffEqBase.jl
•	 Scott P. Jones, contributions to DiffEqBase.jl
•	 Virgile Andreani, contributed the enhanced plotting

functionality
•	 Ethan Levien, contributions to DiffEqMonteCarlo.jl

and DiffEqJump.jl
•	 Michael Fiano, contributions to the documentation
•	 David Barton, contributions to the dense output in

OrdinaryDiffEq.jl

2.5 Software location
Archive: Zenodo

Name: JuliaDiffEq/DifferentialEquations.jl
Persistent identifier: DOI: 10.5281/zenodo.283869
Licence: MIT
Publisher: Christopher Rackauckas
Version published: v1.8.0
Date published: 2/9/2017

Code repository: Github
Name: JuliaDiffEq/DifferentialEquations.jl
Persistent identifier: github.com/JuliaDiffEq/

DifferentialEquations.jl
Licence: MIT
Date published: 09/21/2016

2.6 Language
English

(3) Reuse Potential
Differential equations form the bedrock of many scientific
fields. Therefore, there is no question as to whether
numerical differential equation solvers will be used, rather
the question is which ones will be used. Julia is a relatively
young language which is seeing rapid adoption in the
fields of data science and scientific computing due to the
performance and productivity that it offers. Because of this,
many scientists using Julia will need these tools either as
a means to analyze models themselves, or as intermediate
tools in more complex methods. With its applicability to
many classes of differential equations, its included analysis
tools for performing parameter estimation and sensitivity
analysis, and the rapid pace at which this software is being
developed, DifferentialEquations.jl looks to be a viable
choice for many Julians looking for a differential equations
library. Lastly, as an open-source software with a modular

https://doi.org/10.5281/zenodo.283869
https://github.com/JuliaDiffEq/DifferentialEquations.jl
https://github.com/JuliaDiffEq/DifferentialEquations.jl

Rackauckas and Nie: DifferentialEquations.jl Art. 15, p. 9 of 10

structure, it is easily extendable. For information on how to
extend the functionality of DifferentialEquations.jl please
see the Contributor’s Guide at DiffEqDevDocs.jl.

Notes
	 1	 http://docs.juliadiffeq.org/latest/
	 2	 https://github.com/JuliaDiffEq/DiffEqTutorials.jl
	 3	 https://github.com/JuliaLang/IJulia.jl
	 4	 https://github.com/JuliaPlots/Plots.jl
	 5	 https://github.com/JuliaPy/PyPlot.jl
	 6	 http://matplotlib.org/
	 7	 https://github.com/symengine/SymEngine.jl
	 8	 https://github.com/JuliaDiffEq
	 9	 https://github.com/JuliaDiffEq/DiffEqBase.jl
	 10	 https://github.com/JuliaDiffEq/OrdinaryDiffEq.jl
	 11	 https://github.com/JuliaDiffEq/Sundials.jl
	 12	 https://github.com/JuliaDiffEq/ODE.jl
	 13	 https://github.com/luchr/ODEInterface.jl
	 14	 https://github.com/rveltz/LSODA.jl
	 15	 https://github.com/JuliaArbTypes/ArbFloats.jl
	 16	 https://github.com/stevengj/DecFP.jl
	 17	 https://github.com/JuliaDiffEq/DiffEqTutorials.

jl/blob/master/ExtraODEFeatures/Feagin’s%20
Order%2010%2C%2012%2C%20and%2014%20
methods.ipynb

	 18	 https://github.com/Keno/SIUnits.jl
	 19	 https://github.com/ajkeller34/Unitful.jl
	 20	 https://github.com/JuliaDiffEq/DiffEqTutori-

als.jl/blob/master/ExtraODEFeatures/Unit%20
Checked%20Arithmetic%20via%20Unitful.ipynb

	 21	 https://github.com/JuliaDiffEq/DiffEqBenchmarks.
jl/blob/master/Parallelism/Multithreaded%20
Runge-Kutta%20Methods.ipynb

	 22	 https://github.com/JuliaDiffEq/OrdinaryDiffEq.jl
	 23	 http://devdocs.juliadiffeq.org/latest
	 24	 https://github.com/JuliaDiffEq/DifferentialEqua-

tions.jl/tree/master/benchmarks
	 25	 https://github.com/JuliaDiffEq/Sundials.jl
	 26	 https://github.com/luchr/ODEInterface.jl
	 27	 https://github.com/JuliaParallel/DistributedArrays.jl
	 28	 https://github.com/JuliaParallel/PETSc.jl
	 29	 https://github.com/kshyatt/CUSOLVER.jl
	 30	 https://github.com/JuliaDiff/ForwardDiff.jl
	 31	 https://discourse.julialang.org/
	 32	 https://github.com/JuliaDiffEq/DifferentialEqua-

tions.jl/issues
	 33	 https://gitter.im/JuliaDiffEq/Lobby
	 34	 http://juliadiffeq.org/news
	 35	 https://github.com/JuliaDiffEq/DiffEqBase.jl
	 36	 https://github.com/JuliaDiffEq/StochasticDiffEq.jl
	 37	 https://github.com/JuliaDiffEq/FiniteElementDif-

fEq.jl
	 38	 https://github.com/JuliaDiffEq/DiffEqDevTools.jl
	 39	 https://github.com/JuliaDiffEq/OrdinaryDiffEq.jl
	 40	 https://github.com/JuliaDiffEq/AlgebraicDiffEq.jl
	 41	 https://github.com/JuliaDiffEq/StokesDiffEq.jl
	 42	 https://github.com/JuliaDiffEq/DiffEqParamEstim.jl
	 43	 https://github.com/JuliaDiffEq/DiffEqSensitivity.jl
	 44	 https://github.com/JuliaDiffEq/Sundials.jl
	 45	 https://github.com/JuliaDiffEq/ODEInterfaceDiffEq.jl
	 46	 https://github.com/JuliaDiffEq/ParameterizedF

unctions.jl
	 47	 https://github.com/JuliaDiffEq/DiffEqPDEBase.jl
	 48	 https://github.com/JuliaDiffEq/DelayDiffEq.jl
	 49	 https://github.com/JuliaDiffEq/DiffEqCallbacks.jl
	 50	 https://github.com/JuliaDiffEq/DiffEqMonteCarlo.jl
	 51	 https://github.com/JuliaDiffEq/DiffEqJump.jl
	 52	 https://github.com/JuliaDiffEq/DiffEqFinancial.jl
	 53	 https://github.com/JuliaDiffEq/DiffEqBiological.jl
	 54	 https://github.com/JuliaDiffEq/MultiScaleArrays.jl
	 55	 https://github.com/JuliaPlots/RecipesBase.jl
	 56	 https://github.com/JuliaNLSolvers/Optim.jl
	 57	 https://github.com/mauro3/Parameters.jl
	 58	 https://github.com/JuliaDiff/ForwardDiff.jl
	 59	 https://github.com/JuliaMath/IterativeSolvers.jl
	 60	 https://github.com/simonbyrne/GenericSVD.jl
	 61	 https://github.com/JuliaLang/Compat.jl
	 62	 https://github.com/simonbyrne/InplaceOps.jl
	 63	 https://github.com/symengine/SymEngine.jl
	 64	 https://github.com/luchr/ODEInterface.jl
	 65	 https://github.com/JuliaDiffEq/ODE.jl
	 66	 https://github.com/rveltz/LSODA.jl

Acknowledgments
We would like to thank the Julia community for the
support they have given me throughout this project.
Special thanks goes out to Ismael Venegas Castello (@
Ismael-VC), Lyndon White (@oxinabox), Fengyang Wang
(@TotalVerb), and Scott P. Jones (@ScottPJones) from
whom CR learned many languages tricks in our long
Gitter discussions. CR would also like to acknowledge
Tom Breloff (@tbreloff) for his work on Plots.jl and
the development of the recipe concept which allowed
DifferentialEquations.jl to so easily meld with the plot
functionalities. Lastly, CR would like to thank @finmod
for repeatedly helping to identify documentation which
needs updates.

Competing Interests
The authors have no competing interests to declare.

References
1.	 Ahnert, K, Demidov, D and Mulansky, M 2014

Solving Ordinary Differential Equations on GPUs, pp.
125–157. Springer International Publishing, Cham.
DOI: https://doi.org/10.1007/978-3-319-06548-9_7

2.	 Bezanson, J, Edelman, A, Karpinski, S and Shah,
V B 2017 Julia: A Fresh Approach to Numerical
Computing, SIAM Review, 59(1), pp. 65–98. DOI: htt-
ps://doi.org/10.1137/141000671

3.	 Campbell, S A 2007 Time Delays in Neural Systems, pp.
65–90, Springer Berlin Heidelberg, Berlin, Heidelberg.

4.	 Carletti, M 2006 Numerical solution of stochastic
differential problems in the biosciences, Journal of
Computational and Applied Mathematics, 185(2),
pp. 422–440. DOI: https://doi.org/10.1016/j.
cam.2005.03.020

5.	 DeSantiago, R, Fouque, J-P and Sølna, K 2007 Bond
Markets with Stochastic Volatility.

6.	 Fang, J, Varbanescu, A L, Sips, J, Zhang, L, Che, Y
and Xu, C 2013 An Empirical Study of Intel Xeon Phi,
CoRR, abs/1310.5842.

http://docs.juliadiffeq.org/latest/
https://github.com/JuliaDiffEq/DiffEqTutorials.jl
https://github.com/JuliaLang/IJulia.jl
https://github.com/JuliaPlots/Plots.jl
https://github.com/JuliaPy/PyPlot.jl
http://matplotlib.org/
https://github.com/symengine/SymEngine.jl
https://github.com/JuliaDiffEq
https://github.com/JuliaDiffEq/DiffEqBase.jl
https://github.com/JuliaDiffEq/OrdinaryDiffEq.jl
https://github.com/JuliaDiffEq/Sundials.jl
https://github.com/JuliaDiffEq/ODE.jl
https://github.com/luchr/ODEInterface.jl
https://github.com/rveltz/LSODA.jl
https://github.com/JuliaArbTypes/ArbFloats.jl
https://github.com/stevengj/DecFP.jl
https://github.com/JuliaDiffEq/DiffEqTutorials.jl/blob/master/ExtraODEFeatures/Feagin�s%20Order%2010%2C%2012%2C%20and%2014%20methods.ipynb
https://github.com/JuliaDiffEq/DiffEqTutorials.jl/blob/master/ExtraODEFeatures/Feagin�s%20Order%2010%2C%2012%2C%20and%2014%20methods.ipynb
https://github.com/JuliaDiffEq/DiffEqTutorials.jl/blob/master/ExtraODEFeatures/Feagin�s%20Order%2010%2C%2012%2C%20and%2014%20methods.ipynb
https://github.com/JuliaDiffEq/DiffEqTutorials.jl/blob/master/ExtraODEFeatures/Feagin�s%20Order%2010%2C%2012%2C%20and%2014%20methods.ipynb
https://github.com/Keno/SIUnits.jl
https://github.com/ajkeller34/Unitful.jl
https://github.com/JuliaDiffEq/DiffEqTutorials.jl/blob/master/ExtraODEFeatures/Unit%20Checked%20Arithmetic%20via%20Unitful.ipynb
https://github.com/JuliaDiffEq/DiffEqTutorials.jl/blob/master/ExtraODEFeatures/Unit%20Checked%20Arithmetic%20via%20Unitful.ipynb
https://github.com/JuliaDiffEq/DiffEqTutorials.jl/blob/master/ExtraODEFeatures/Unit%20Checked%20Arithmetic%20via%20Unitful.ipynb
https://github.com/JuliaDiffEq/DiffEqBenchmarks.jl/blob/master/Parallelism/Multithreaded%20Runge-Kutta%20Methods.ipynb
https://github.com/JuliaDiffEq/DiffEqBenchmarks.jl/blob/master/Parallelism/Multithreaded%20Runge-Kutta%20Methods.ipynb
https://github.com/JuliaDiffEq/DiffEqBenchmarks.jl/blob/master/Parallelism/Multithreaded%20Runge-Kutta%20Methods.ipynb
https://github.com/JuliaDiffEq/OrdinaryDiffEq.jl
http://devdocs.juliadiffeq.org/latest
https://github.com/JuliaDiffEq/DifferentialEquations.jl/tree/master/benchmarks
https://github.com/JuliaDiffEq/DifferentialEquations.jl/tree/master/benchmarks
https://github.com/JuliaDiffEq/Sundials.jl
https://github.com/luchr/ODEInterface.jl
https://github.com/JuliaParallel/DistributedArrays.jl
https://github.com/JuliaParallel/PETSc.jl
https://github.com/kshyatt/CUSOLVER.jl
https://github.com/JuliaDiff/ForwardDiff.jl
https://discourse.julialang.org/
https://github.com/JuliaDiffEq/DifferentialEquations.jl/issues
https://github.com/JuliaDiffEq/DifferentialEquations.jl/issues
https://gitter.im/JuliaDiffEq/Lobby
http://juliadiffeq.org/news
https://github.com/JuliaDiffEq/DiffEqBase.jl
https://github.com/JuliaDiffEq/StochasticDiffEq.jl
https://github.com/JuliaDiffEq/FiniteElementDiffEq.jl
https://github.com/JuliaDiffEq/FiniteElementDiffEq.jl
https://github.com/JuliaDiffEq/DiffEqDevTools.jl
https://github.com/JuliaDiffEq/OrdinaryDiffEq.jl
https://github.com/JuliaDiffEq/AlgebraicDiffEq.jl
https://github.com/JuliaDiffEq/StokesDiffEq.jl
https://github.com/JuliaDiffEq/DiffEqParamEstim.jl
https://github.com/JuliaDiffEq/DiffEqSensitivity.jl
https://github.com/JuliaDiffEq/Sundials.jl
https://github.com/JuliaDiffEq/ODEInterfaceDiffEq.jl
https://github.com/JuliaDiffEq/ParameterizedF-unctions.jl
https://github.com/JuliaDiffEq/ParameterizedF-unctions.jl
https://github.com/JuliaDiffEq/DiffEqPDEBase.jl
https://github.com/JuliaDiffEq/DelayDiffEq.jl
https://github.com/JuliaDiffEq/DiffEqCallbacks.jl
https://github.com/JuliaDiffEq/DiffEqMonteCarlo.jl
https://github.com/JuliaDiffEq/DiffEqJump.jl
https://github.com/JuliaDiffEq/DiffEqFinancial.jl
https://github.com/JuliaDiffEq/DiffEqBiological.jl
https://github.com/JuliaDiffEq/MultiScaleArrays.jl
https://github.com/JuliaPlots/RecipesBase.jl
https://github.com/JuliaNLSolvers/Optim.jl
https://github.com/mauro3/Parameters.jl
https://github.com/JuliaDiff/ForwardDiff.jl
https://github.com/JuliaMath/IterativeSolvers.jl
https://github.com/simonbyrne/GenericSVD.jl
https://github.com/JuliaLang/Compat.jl
https://github.com/simonbyrne/InplaceOps.jl
https://github.com/symengine/SymEngine.jl
https://github.com/luchr/ODEInterface.jl
https://github.com/JuliaDiffEq/ODE.jl
https://github.com/rveltz/LSODA.jl
https://doi.org/10.1007/978-3-319-06548-9_7
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1016/j.cam.2005.03.020
https://doi.org/10.1016/j.cam.2005.03.020

Rackauckas and Nie: DifferentialEquations.jlArt. 15, p. 10 of 10

7.	 Gierer, A and Meinhardt, H 1972 A theo-
ry of biological pattern formation, Kybernetik,
12(1), pp. 30–39. DOI: https://doi.org/10.1007/
BF00289234

8.	 Hairer, E, Nørsett, S P and Wanner, G 2009 Solv-
ing ordinary differential equations I : nonstiff prob-
lems, Springer series in computational mathematics.
Springer, Heidelberg; London, 2nd rev. ed.

9.	 Higham, D J An Algorithmic Introduction to Numerical
Simulation of Stochastic Differential Equations.

10.	Hill, G W 1900 On the Extension of Delaunay’s
Method in the Lunar Theory to the General Problem
of Planetary Motion, Transactions of the American
Mathematical Society, 1(2), pp. 205–242.

11.	Hindmarsh, A C, Brown, P N, Grant, K E, Lee, S L,
Serban, R, Shumaker, D E and Woodward, C S
2005 Sundials: Suite of nonlinear and differen-
tial/algebraic equation solvers, ACM Trans. Math.
Softw., 31(3), pp. 363–396. DOI: https://doi.
org/10.1145/1089014.1089020

12.	James, W, Esther, W, Jonathan, H and Richard, M
2016 Periodic orbits for a discontinuous vector
field arising from a conceptual model of glacial
cycles, Nonlinearity, 29(6), 1843. DOI: https://doi.
org/10.1088/0951-7715/29/6/1843

13.	Jha, S K and Langmead, C J 2012 Exploring
behaviors of stochastic differential equation models
of biological systems using change of measures, BMC
Bioinformatics, 13(Suppl 5), pp. S8–S8. DOI: https://
doi.org/10.1186/1471-2105-13-S5-S8

14.	Johansson, F 2014 Efficient implementation of
elementary functions in the medium-precision range,
CoRR, abs/1410.7176.

15.	Jones, E, Oliphant, T, Peterson, P et al. 2001 – SciPy:
Open source scientific tools for Python, [Online;
accessed 2017-03-17]

16.	Juno 9/21/2016, v0.2.1, https://github.com/Ju-
noLab/uber-juno.

17.	Lima, J V F, Maillard, N, Broquedis, F, Gautier, T, Lu-
bin, M and Dunning, I 2013 Performance evaluation
of intel xeon phi coprocessor using xkaapi, Workshop
on Parallel and Distributed Processing.

18.	Manabe, S and Bryan, K 1969 Climate Calculations
with a Combined Ocean-Atmosphere Model, Journal
of the Atmospheric Sciences, 26(4), 786–789. DOI: htt-
ps://doi.org/10.1175/1520-0469(1969)026<0786:CC
WACO>2.0.CO;2

19.	Pérez, F and Granger, B E 2007 May. IPython: a System
for Interactive Scientific Computing, Computing in
Science and Engineering, 9(3), 21–29. DOI: https://doi.
org/10.1109/MCSE.2007.53

20.	Rackauckas, C 2016 Interfacing with a Xeon Phi via
Julia, StochasticLifestyle.com.

21.	Rackauckas, C and Nie, Q 2016 Adaptive Methods
for Stochastic Differential Equations via Natural
Embeddings and Rejection Sampling with Memory,
Discrete and Continuous Dynamical Systems – Series B,
22(7), pp. 2731–2761. DOI: https://doi.org/10.3934/
dcdsb.2017133

22.	Saarinen, A, Linne, M-L and Yli-Harja, O 2008 Stochastic
Differential Equation Model for Cerebellar Granule Cell
Excitability, PLoS Comput Biol, 4(2), e1000004. DOI:
https://doi.org/10.1371/journal.pcbi.1000004

23.	Safarov, N and Atkinson, C 2015 Natural Gas Storage
Valuation and Optimisation Under Time-Inhomogene-
ous Exponential Lévy Processes, International Journal
of Computer Mathematics.

24.	Shampine, L F and Gahinet, P 2006 Delay-differ-
ential-algebraic equations in control theory, Appl.
Numer. Math., 56(3–4), pp. 574–588. DOI: https://doi.
org/10.1016/j.apnum.2005.04.025

25.	Shampine, L F and Reichelt, M W The MATLAB ODE
Suite.

26.	Soetaert, K, Petzoldt, T and Setzer, R W 2010 Solving
Differential Equations in R: Package deSolve, Journal of
Statistical Software, 33(9), pp. 1–25. DOI: https://doi.
org/10.18637/jss.v033.i09

27.	Sosnik, J, Zheng, L, Rackauckas, C V, Digman, M,
Gratton, E, Nie, Q and Schilling, T F 2016 Noise
modulation in retinoic acid signaling sharpens
segmental boundaries of gene expression in the
embryonic zebrafish hindbrain, eLife, 5, e14034. DOI:
https://doi.org/10.7554/eLife.14034

28.	SymEngine 9/21/2016 v0.2.0, https://github.com/
symengine/symengine.

29.	Verner, J H 2013 Explicit Runge Kutta pairs with lower
stage-order, Numerical Algorithms, 65(3), pp. 555–577.
DOI: https://doi.org/10.1007/s11075-013-9783-y

30.	Xiao, L, Cai, Q, Li, Z, Zhao, H and Luo, R 2014 A
multi-scale method for dynamics simulation in con-
tinuum solvent models. i: Finite-difference algo-
rithm for Navier–Stokes equation, Chemical Physics
Letters, 616–617, 67–74. DOI: https://doi.org/10.1016
/j.cplett.2014.10.033

How to cite this article: Rackauckas, C and Nie, Q 2017 DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for
Solving Differential Equations in Julia. Journal of Open Research Software, 5: 15, DOI: https://doi.org/10.5334/jors.151

Published: 29 September 2016 Accepted: 15 May 2017 Published: 25 May 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.1007/BF00289234
https://doi.org/10.1007/BF00289234
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1088/0951-7715/29/6/1843
https://doi.org/10.1088/0951-7715/29/6/1843
https://doi.org/10.1186/1471-2105-13-S5-S8
https://doi.org/10.1186/1471-2105-13-S5-S8
https://github.com/JunoLab/uber-juno
https://github.com/JunoLab/uber-juno
https://doi.org/10.1175/1520-0469(1969)026<0786:CCWACO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)026<0786:CCWACO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)026<0786:CCWACO>2.0.CO;2
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
http://www.StochasticLifestyle.com
http://www.StochasticLifestyle.com
http://www.StochasticLifestyle.com
https://doi.org/10.1371/journal.pcbi.1000004
https://doi.org/10.1016/j.apnum.2005.04.025
https://doi.org/10.1016/j.apnum.2005.04.025
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.7554/eLife.14034
https://github.com/symengine/symengine
https://github.com/symengine/symengine
https://doi.org/10.1007/s11075-013-9783-y
https://doi.org/10.1016/j.cplett.2014.10.033
https://doi.org/10.1016/j.cplett.2014.10.033
https://doi.org/10.5334/jors.151
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	1 Introduction
	1.1 A Unified API Through Multiple Dispatch
	1.1.1 Solving ODEs
	1.1.2 Solving SDEs
	1.1.3 Solving (Stochastic) PDEs

	1.2 Enhanced Performance and Readability Through Macros
	1.2.1 A Macro-Based Interface
	1.2.2 Explicit Parameters
	1.2.3 Enhanced Performance Through Symbolic Calculations

	1.3 The Distributed Structure of DifferentialEquations.jl
	1.3.1 Building the solve function from DiffEqBase.jl and Component Solvers
	1.3.2 The Add-on Packages

	1.4 Multiple Dispatch as a tool for Arbitrary Numerics
	1.4.1 Case 1: Arbitrary Precision Numerics
	1.4.2 Case 2: Unitful Numbers

	1.5 Integrated Parallelism
	1.5.1 Within-Method Multithreading
	1.5.2 Multi-Node Monte Carlo Simulations

	1.6 Development, Testing, and Benchmarking
	1.6.1 Development
	1.6.2 Testing
	1.6.3 Benchmarking

	1.7 Limitations and Future Development Plans
	1.8 Quality Control

	(2) Availability
	2.1 Operating system
	2.2 Programming language
	2.3 Dependencies
	2.4 List of contributors
	2.5 Software location
	2.6 Language

	(3) Reuse Potential
	Notes
	Acknowledgments
	Competing interests
	References
	Figure 1

