
Vousden, M et al 2016 Virtual Micromagnetics: A Framework for Accessible and Reproducible
Micromagnetic Simulation. Journal of Open Research Software, 4: e41, DOI: http://dx.doi.
org/10.5334/jors.141

Journal of
open research software

SOFTWARE METAPAPER

Virtual Micromagnetics: A Framework for Accessible and
Reproducible Micromagnetic Simulation
Mark Vousden, Marc-Antonio Bisotti, Maximilian Albert and Hans Fangohr
Faculty of Engineering and the Environment, University of Southampton, Southampton, SO16 7QF, GB
Corresponding author: Mark Vousden
(mark.vousden@soton.ac.uk)

Computational micromagnetics requires numerical solution of partial differential equations to resolve
complex interactions in magnetic nanomaterials. The Virtual Micromagnetics project described here pro-
vides virtual machine simulation environments to run open-source micromagnetic simulation packages
[1]. These environments allow easy access to simulation packages that are often difficult to compile and
install, and enable simulations and their data to be shared and stored in a single virtual hard disk file,
which encourages reproducible research. Virtual Micromagnetics can be extended to automate the instal-
lation of micromagnetic simulation packages on non-virtual machines, and to support closed-source and
new open-source simulation packages, including packages from disciplines other than micromagnetics,
encouraging reuse. Virtual Micromagnetics is stored in a public GitHub repository under a three-clause
Berkeley Software Distribution (BSD) license.

Keywords: Micromagnetics; Numerical Simulation; Virtual Machines; OOMMF; Continuous Integration
Funding Statement: We acknowledge financial support from EPSRC’s DTC grant EP/G03690X/1.

(1) Overview
1.1 Introduction
Micromagnetics is the study of the physical properties
and behavior of magnetic materials at micrometer length
scales. Micromagnetics research has promising applica-
tions in data storage and processing device design [2, 3].
The dynamics of micromagnetic systems are governed by
competing energy terms, resulting in a complex system
that can only be resolved using numerical simulation
[4]. Several open-source numerical simulation software
packages exist to simulate micromagnetic systems, each
suitable to solve different problem types. Some of these
packages are actively used and heavily cited in the litera-
ture [5] demonstrating their importance to micromag-
netic research.

Since micromagnetic simulation packages are typically
designed to run on a specific operating system, the user’s
choice of operating system may limit the number of sim-
ulation packages available to them. Even on a supported
operating system, it is often difficult to install these
simulation packages due to their complicated install pro-
cedures. This problem is worsened where the target audi-
ence of these simulation packages are researchers with
focus in design, experimental, or analytical work who
may not have computational science training. These fac-
tors inhibit the accessibility of the simulation software.

Another difficulty relates to the reproducibility of simu-
lation results: if a result is computed with a particular sim-
ulation software, it should be reproducible in the future
if the same simulation software is used again. However,
when using the same version of the simulation software,
different results may be computed if a different version of
a third-party library is used [6].

Both problems of accessibility and reproducibility can
be overcome by supplying pre-packaged execution envi-
ronments in which micromagnetic simulations can be
run, including third-party libraries and an operating sys-
tem (providing accessibility). These environments remove
the need for the user to deal with complicated installa-
tion procedures, preserve the simulation setup, and allow
the researcher to share the environment with other users
(providing reproducibility).

The Virtual Micromagnetics project provides such virtual
machines in which numerical micromagnetic simulations
can be run. Virtual machines, as described in Section 1.2.1,
are processes that emulate a machine with an operating
system. These virtual machines operate in isolation from
the machine hosting them. This isolation allows virtual
machines to execute simulations on personal computers,
high-throughput compute clusters, and cloud compute
services identically. Since a virtual machine emulates a
real machine, no additional knowledge of interfaces or

http://dx.doi.org/10.5334/jors.141
http://dx.doi.org/10.5334/jors.141
mailto:mark.vousden@soton.ac.uk

Vousden et al: Virtual MicromagneticsArt. e41, p. 2 of 7

micromagnetic simulation is required beyond the ini-
tial brief setup procedure of the virtual machine. Virtual
Micromagnetics supports four open-source packages:
OOMMF [7], Nmag [8], Magpar [9], and Fidimag [10], and
has also been used with closed-source software to generate
results for two research publications [11, 12].

1.1.1 Use cases
Virtual Micromagnetics contains two usable components:
the virtual environments produced from the build process
as described in Section 1.2, and the source files that install
micromagnetic simulation packages in an automated
manner. The target audience of these components are
“users” and “power users” respectively, where:

•	Users include researchers that wish to access micro-
magnetic simulation software and run reproducible
simulations, as well as students learning micromag-
netics that require a stable micromagnetic simula-
tion environment.
•	 Power users include system administrators looking

to install micromagnetic packages, and micromag-
netic simulation software developers looking to make
their software more accessible.

User use cases (Ui), which informed the design decisions
of Virtual Micromagnetics as described in Section 1.2,
include:

U1	 �To run a micromagnetic simulation on a computer
with an operating system not supported by the
simulation package.

U2	 �To distribute micromagnetic simulation and post-
processing scripts and data to others for reproduc-
ibility and collaboration.

U3	 �To archive micromagnetic simulation software as a
supplement for reports and publications to enable
reproducibility.

U4	 �To run micromagnetic simulations on cloud comput-
ing resources or high throughput computing hard-
ware, where installing the micromagnetic software
is more difficult due to lack of administrator rights.

Additionally, power user use cases (Pj) include:

P1	 �To provide an environment for users to run micro-
magnetic simulations using either existing software
or newly developed micromagnetic software from
the power user.

P2	 �To validate a new micromagnetic simulation pack-
age by direct comparison with existing simulation
packages. For example, the micromagnetic standard
problems [13, 14, 15, 16] can be executed inside
the virtual machine. The results computed by each
package can be compared to conclude whether or
not a new package achieves results consistent with
other packages.

P3	 �To install micromagnetic simulation software to run
natively on specialist hardware, such as high perfor-
mance computing clusters.

1.2 Implementation and architecture
In this section, we explain our choice of virtualization
tool with reference to the use cases presented in Section
1.1.1 by discussing virtual machines, Linux contain-
ers, and the implications of virtual machines for high-
performance computing with Graphics Processing Units
(GPUs) and coprocessors. We then define what Virtual
Micromagnetics environments are and how they are built.
Lastly, we describe the process of provisioning virtual
machines with micromagnetic simulation packages and
other software required by Virtual Micromagnetics users.

1.2.1 Virtual Machines and Simulation Distribution
In this work, we define a virtual machine as a software that
imitates a machine with an operating system (OS). This is a
“system virtual machine” as defined by the literature [17].
Virtual machines effectively decouple the simulation soft-
ware running inside the them from the underlying host
operating system. Since virtual machines can be operated
on a variety of different hardware and software configura-
tions, this enables software tasks to be undertaken within
precisely defined environments on many different host
configurations. Running a virtual machine is a process
defined by a set of files (of the order of gigabytes in size
in Virtual Micromagnetics) representing both a hard disk,
and a description of the hardware that the machine emu-
lates. The isolated nature of virtual machines make them
ideal for research, as the simulation environment can be
archived and reproduced, satisfying use case U3 defined in
Section 1.1.1. Virtual Micromagnetics virtual machines use
an Ubuntu GNU/Linux OS, which users will need to inter-
act with in order to run simulations.

The file-based nature of virtual machines makes it pos-
sible to duplicate and distribute them, satisfying use case
U2. Virtual machines can contain the scripts and environ-
ment used to run a simulation, and can be included in
support of a publication in addition to simulation data. If
the machine supporting a publication is made freely avail-
able, any researcher can download it and run the simula-
tion. This ease of distribution also eases the introduction
of new researchers to micromagnetic simulation using
Virtual Micromagnetics, as they no longer require exten-
sive software knowledge to install micromagnetics simula-
tion packages on their machines. However, since the files
that define virtual machines are large, users must consider
requirements on their network when downloading these
virtual machines. An alternative mechanism to distribute
simulation software is to host the virtual machine on a
cloud computing service [18], so that other research-
ers can reproduce the published simulation without the
networking and compute overheads for a fee. These two
distribution mechanisms can be provided simultaneously,
giving the target researcher the choice of how they wish to
reproduce the simulation.

1.2.2 Linux Containers
Linux containers [19] are another virtualization tech-
nology that supports execution of applications in iso-
lated environments. Containers do not run their own
OS, and instead use functionality from the host OS as a

Vousden et al: Virtual Micromagnetics Art. e41, p. 3 of 7

substitute. This design reduces the hard disk require-
ment of a container compared to the corresponding vir-
tual machine, since a virtual machine must contain an
OS. Furthermore, applications run in a container do so
at near-native processing, memory, and disk performance
[20]. This is unlike a virtual machine, which demands
additional computational overhead from the host to run
its OS. While it is possible to use virtual machines in tra-
ditional high-performance computing clusters running
GNU/Linux, containers are a superior option in this case
due to their lightweight nature. However, unlike contain-
ers, virtual machines can run in isolation from the host OS
since virtual machines contain an OS of their own. This
allows a virtual machine running a GNU/Linux OS to be
used on a host machine running a different OS, such as a
Windows OS. This satisfies the operating system require-
ments in use case U1. This feature also satisfies the cloud
computing use case U4, where the OS can vary, making
virtual machines a superior choice over containers in this
case. Virtual machines have been used in this project as
opposed to containers, but container support is planned
for a later release of Virtual Micromagnetics to support
more use cases.

1.2.3 Effect of Virtual Machine use on Simulation
Performance
Tasks run in virtual machines exhibit worse CPU, I/O, and
network performance than tasks run natively [21, 22],
though virtual machine performance has improved consid-
erably with virtualization technology [20]. Furthermore,
the magnitude of this performance loss varies greatly
with the software and hardware of the host machine. This
reduced performance impacts simulation time, which
demonstrates a compromise between the reproducibility
and accessibility of a simulation with simulation execu-
tion time.

Coprocessors [23] and Graphics Processing Units (GPUs)
are seeing increased use in high-performance computing
applications [24, 25]. When compared to the specifica-
tion of CPUs, GPUs contain considerably more processors,
but these processors run at a lower clock speed and have
less internal memory. This architecture makes them suit-
able for problems that parallelize well and contain many
compute operations, but have low memory requirements.
Simulating these problems with GPUs can considerably
reduce simulation execution time, but this compromises
the portability, reproducibility and accessibility of the
simulation because a specific class of GPU is required to
run optimally. Micromagnetics suits this problem descrip-
tion, so micromagnetic simulation packages have been
produced for GPU architectures using finite-element [26],
and finite-difference approaches [27, 28], including the
open-source MuMax [29] which is commonly used for
numerical simulation in the literature.

Two methods exist to implement GPU computing in vir-
tual machines. Firstly, while it is possible to virtualize a
GPU using a physical GPU at a performance cost [30], this
cost is often not suitable for high-performance computing
simulations. An alternative used in cloud compute services
is to connect the virtual machine to a physical GPU cluster.

This approach maintains the performance gain from using
GPUs in simulation, but at the cost of portability, as the
simulation can only be run on the cloud service and other
machines with that GPU. Virtual Micromagnetics environ-
ments do not currently support GPU-enabled simulations.

1.2.4 Build process
The build process for creating a virtual machine image
is presented in Figure 1. Virtual machine images are
binary files that precisely define a virtual machine. These
files include the contents of the hard disk of the virtual
machine, as well as a specification for the machine. An
image allows the user to create Virtual Micromagnetics
machines as shown by the run process in Figure 1.

The build process is triggered by commanding “make
full” in the root directory of the Virtual Micromagnetics
source code repository. Comprehensive instructions to
install software and execute the build process are in the
documentation.1 To begin, a virtual machine image (A in
Figure 1) of a minimal Ubuntu GNU/Linux installation is
downloaded using Vagrant [31]. Vagrant is an automation
tool that interfaces with other software to deploy computa-
tional environments, such as virtual machines. VirtualBox is
one of multiple software packages that Vagrant interfaces
with, which can create, run, and destroy virtual machines
[32]. The second step in the build process uses VirtualBox
to create a virtual machine (B) from the image downloaded
in step (A). Once the machine is created, Ansible [33] is used
to install the simulation software on the virtual machine,
test the software, and configure other file system require-
ments. This process is called provisioning, and is described
further in Section 1.2.5. The final stage of the build process
is to package the provisioned machine (C) into an image
(D). This new image can be downloaded by others to cre-
ate a copy of the provisioned virtual machine on their hard-
ware. Virtual Micromagnetics environments are online at
http://atlas.hashicorp.com/virtualmicromagnetics. Users
access the virtual machine by commanding “vagrant
init virtualmicromagnetics/full; vagrant
up”,2 which downloads the image and creates and starts the
user’s virtual machine (E).

1.2.5 Provisioning using Ansible
In this work, provisioning a virtual machine is the action
of installing the simulation software, testing it, and per-
forming other file system configuration on the virtual
machine. Tools that help with provisioning are either
instruction-driven or state-driven. Instruction-driven pro-
visioners are defined by a set of instructions, whereas
state-driven provisioners are defined by a desired end
state. A state-driven provisioner is more suitable for pro-
visioning virtual machines, since the final state of the
machine is desired, as opposed to the steps needed to cre-
ate the virtual machine. The Bourne-Again Shell (Bash) is
an example of an instruction-driven provisioner. In Virtual
Micromagnetics, we use the state-driven provisioner
Ansible due to its ease of testing, and superior modularity
and error control. This is discussed further in Section 1.3.
The advantages of Ansible come at the cost of using soft-
ware with less widespread familiarity than Bash.

http://atlas.hashicorp.com/virtualmicromagnetics

Vousden et al: Virtual MicromagneticsArt. e41, p. 4 of 7

Ansible allows easy customization of virtual machines by
allowing the power user to install combinations of simu-
lation software. For Virtual Micromagnetics, this process
is described in the documentation3, and means virtual
machines can be built for individual needs; satisfying use
case P1 defined in Section 1.1.1. Furthermore, additional
software installation procedures can be incorporated
into this modular provisioning framework, meaning new
private or public simulation software can be installed
using Virtual Micromagnetics if the maintainer of that
software provides Ansible scripts for the installation. The
new software can be compared with existing software
installed on the virtual machine, satisfying use case P2. In
addition, Ansible can also provision physical machines (as
opposed to virtual machines), so Virtual Micromagnetics
installation procedures can be applied to a variety of
non-virtual systems, satisfying use case P3. This feature
allows power users to directly provision a machine in the
cloud using Ansible.

1.3 Quality control
The virtual machines provided by Virtual Micromagnetics
must be tested to ensure quality before they are distrib-
uted for research. To facilitate the automated execution
of tests, a Jenkins [34] continuous integration server
is used to build Virtual Micromagnetics virtual machine
images.

Ansible, the software that provisions the virtual
machine with simulation software, fails immediately
when a step in the provisioning operation reports an
error. This ensures that the virtual machine image
produced by the build process (D) will only be pro-
duced if Ansible encounters no errors when provision-
ing a machine. This catches procedural errors, such as
certain online resources being unavailable, as well as
errors resulting from modifications made to the Virtual
Micromagnetics source by developers or power users.

In addition to procedural errors, simulation package tests
are also performed during the provisioning operation in

Build Process
(A) Input

Environment Image

(B) Initial
Virtual Machine

1. Vagrant and
VirtualBox creates

(C) Virtual Machine
with Simulation

Packages

2. Ansible
provisions

(D) Output
Environment Image

(at atlas.hashicorp.com)

3. Vagrant
packages

Run Process

(D) Virtual Micromagnetics
Environment Image

(at atlas.hashicorp.com)

(E) User's
Virtual Machine

Vagrant and
VirtualBox creates

Figure 1: Both processes: Dark boxes represent virtual machine image files, whereas white boxes represent run-
ning virtual machines. Left: Automated build process flow. 1. Vagrant uses a virtual machine image (A) to create
an initial virtual machine (B) using VirtualBox. 2. Ansible then provisions the virtual machine for simulation by
installing simulation and support packages, and by altering the file system. 3. Vagrant then packages the virtual
machine (C) as an image for users (D). Right: Automated run process flow. Vagrant downloads the image uploaded
from the build process (D), and creates a virtual machine (E) from it for simulation, using VirtualBox.

Vousden et al: Virtual Micromagnetics Art. e41, p. 5 of 7

the build process. These tests are written by the package
maintainers to assure users that their software works once
installed, and are used here to ensure simulation packages
installed with Virtual Micromagnetics function correctly.
Due to these tests, a machine with either faulty dependen-
cies or a faulty installation of the simulation package will
not be built. Micromagnetic simulation software tests are
made accessible in Virtual Micromagnetics machines, so
users can test each simulation package themselves for assur-
ance. Details of simulation package tests can be found in
the documentation of the simulation package that they test.

Prior to release, Virtual Micromagnetics virtual
machine images produced by the build process are also
checked by the following criteria:

•	 It creates a virtual machine without error when used
with “vagrant up”.

•	 Version and build information can be found on the
machine, presently in the file “virtualmicro-
magnetics_machine_characteristics.
txt” in the root directory, and on the desktop.

•	 Micromagnetic simulation software tests run success-
fully when run as a user on the virtual machine.

•	 Appropriate documentation is present on the Desktop
of the virtual machine. These checks pre-empt software
failures that would arise from the run process.

(2) Availability
Operating system
To run Virtual Micromagnetics, any operating system
supported by Vagrant 1.7.4 or greater and VirtualBox 5.0
or greater is supported by Virtual Micromagnetics. As of
August 2016, this includes:4

•	 Windows Vista SP1+, 7, 8, 8.1, and 10 RTM build 10240
(32 and 64-bit).

•	 Windows Server 2008/R2, and 2012/R2 (64-bit).
•	 Mac OS X 10.8 – 10.11 (Intel hardware required) (64-

bit)
•	 GNU/Linux Ubuntu 10.04 – 16.04, Debian 6.0, 8.0,

and others (32 and 64-bit).
To build the Virtual Micromagnetics environments
from source, any GNU/Linux or Mac OS X operating sys-
tem listed above that supports Ansible 1.9 is supported.

Programming language
No installed programming language is needed to run
Virtual Micromagnetics environments. To build these
environments from the Virtual Micromagnetics source,
interpreters for the following languages are required:

•	 Python 2 (2.7 and higher)
•	 GNU Make

Additional system requirements
Creating and running Virtual Micromagnetics environ-
ments requires resources to support the guest operating
system and the host operating system simultaneously. As
such, the following requirements are in addition to those
of the host operating system.

•	 1 GHz processor
•	 2 GB system memory
•	 10 GB disk space

The machine specifications will define the scale of
simulations that can be run in Virtual Micromagnetics
environments.

Dependencies
The additional software requirements to build or run
Virtual Micromagnetics environments are:

•	 Run (Users)
–	 VirtualBox (5.0 or greater)
–	 Vagrant (1.7.4 or greater)

•	 Build (Power users)
–	 As above
–	 Ansible 1 (1.9 or greater)

List of contributors
•	 Mark Vousden: Software developer, documentation

and website creator.
•	 Maximilian Albert: Contributed to Ansible roles for

open-source packages.
•	 Marc-Antonio Bisotti: Contributed to initial project

Ansible infrastructure.
•	 Hans Fangohr: Project supervisor.

Software location
Archive
Name: Zenodo
Persistent identifier: https://doi.org/10.5281/

zenodo.53870
Licence: Three clause Berkeley Software Distribution

(BSD)
Publisher: Mark Vousden
Version published: 1.0.3
Date published: 03/05/2016

Code repository
Name: GitHub
Persistent identifier: https://github.com/

computationalmodelling/virtualmicromagnetics
Licence: Three clause Berkeley Software Distribution (BSD)
Date published: 03/05/2016 (Version 1.0.3)

Other resources
Homepage: http://virtualmicromagnetics.org
Documentation: http://virtual-micromagnetics.

readthedocs.io

Language
YAML [35] is the primary language used in this repository.
It is used by Ansible to both create and define the state of
software in Virtual Micromagnetics environments.

(3) Reuse potential
Section 1.1 highlights use cases for the Virtual
Micromagnetics project. The number of potential users
of this technology is driven by the number of researchers

https://doi.org/10.5281/zenodo.53870
https://doi.org/10.5281/zenodo.53870
https://github.com/computationalmodelling/virtualmicromagnetics
https://github.com/computationalmodelling/virtualmicromagnetics
http://virtualmicromagnetics.org
http://virtual-micromagnetics.readthedocs.io
http://virtual-micromagnetics.readthedocs.io

Vousden et al: Virtual MicromagneticsArt. e41, p. 6 of 7

working with micromagnetic simulation. The list of pub-
lications using and citing the OOMMF micromagnetic
simulation package alone shows a volume of over two-
thousand published papers [5]. This provides a lower limit
of scientific and engineering work that can benefit from
the Virtual Micromagnetics project.

While Virtual Micromagnetics was developed within the
computational micromagnetics community, its modular
design makes it applicable to software outside of micro-
magnetic simulation. Virtual Micromagnetics can be used
to create virtual environments containing different soft-
ware for other communities, simply by specifying differ-
ent Ansible roles as described in Section 1.2.5. This means
Virtual Micromagnetics can be used for similar projects
in other disciplines, as it is not limited to micromagnetic
research in any way. Reproducibility and accessibility is
a goal in all disciplines running numerical simulation,
hence this wide audience should assure widespread reuse
of Virtual Micromagnetics.

Interdisciplinary reuse of Virtual Micromagnetics is encour-
aged by the developers. Support for Virtual Micromagnetics
exists for users through the GitHub repository issue tracker.

Competing Interests
The authors declare that they have no competing
interests.

Notes
	 1	 http://virtual-micromagnetics.readthedocs.io/en/1.0.3/

getting-started-poweruser.html
	 2	 http://virtual-micromagnetics.readthedocs.io/en/1.0.3/

getting-started-user.html
	 3	 http://virtual-micromagnetics.readthedocs.io/en/1.0.3/

developer-notes.html
	 4	 https://www.virtualbox.org/manual/ch01.html#

hostossupport

References
1.	 Vousden, M, et al. Virtual Micromagnetics. http://

virtualmicromagnetics.org. Accessed: 20 Septem-
ber 2016. DOI: http://dx.doi.org/10.5281/zeno-
do.59518

2.	 Fert, A, Cros, V and Sampaio, J. 2013 “Skyrmions on
the track”. In: Nature Nanotechnology 8(3), pp. 152–156.
DOI: http://dx.doi.org/10.1038/nnano.2013.29

3.	 Zhang, X, Ezawa, M and Zhou, Y. 2015 “Magnetic
skyrmion transistor: skyrmion motion in a voltage-
gated nanotrack”. In: Scientific Reports 5, p. 9400. DOI:
http://dx.doi.org/10.1038/srep11369

4.	 Fidler, J, Schrefl, T. 2000 “Micromagnetic modelling-
the current state of the art”. In: Journal of Physics D:
Applied Physics 33(15), R135. DOI: http://dx.doi.
org/10.1088/0022-3727/33/15/201

5.	 OOMMF citation list showing over 2000 citations.
http://math.nist.gov/oommf/oommf_cites.html. Ac-
cessed: 20 September 2016.

6.	 Mesnard, O, and Barba, L A. 2016 “Reproducible
and Replicable CFD: it’s Harder than you Think”. In:
arXiv preprint 1605:04339. URL: http://arxiv.org/
abs/1605.04339.

7.	 Donahue, M J and Porter, D G. OOMMF Users Guide,
Version 1.0, Interagency Report NISTIR 6376, National
Institute of Standard and Technology, Gaithersburg,
MD, 1999. URL: http://math.nist.gov/oommf.

8.	 Fischbacher, T, et al. 2007 “A systematic approach to
multiphysics extensions of finite-element-based mi-
cromagnetic simulations: Nmag”. In: Magnetics, IEEE
Transactions on 43(6), pp. 2896–2898. DOI: http://
dx.doi.org/10.1109/TMAG.2007.893843

9.	 Scholz, W, et al. 2003 “Scalable parallel micromag-
netic solvers for magnetic nanostructures”. In: Com-
putational Materials Science 28(2) pp. 366–383. DOI:
http://dx.doi.org/10.1016/S0927-0256(03)00119-8

10.	Finite Difference Atomistic and Micromagnetic Solv-
er. http://computationalmodelling.github.io/fidimag.
Accessed: 20 September 2016.

11.	Beg, M, et al. 2014 “Ground State Search, Hysteretic
Behaviour, and Reversal Mechanism of Skyrmionic
Textures in Confined Helimagnetic Nanostructures”.
In: Scientific Reports 5 p. 17137. DOI: http://dx.doi.
org/10.1038/srep17137

12.	Vousden, M, et al. 2016 “Skyrmions in Thin Films with
Easy-Plane Magnetocrystalline Anisotropy”. In: Applied
Physics Letters 108(13) p. 132406. DOI: http://dx.doi.
org/10.1063/1.4945262

13.	mMAG Standard Problem Strategy. http://www.
ctcms.nist.gov/~rdm/stdplan.html. Accessed: 20 Sep-
tember 2016.

14.	Najafi, M, et al. 2009 “Proposal for a standard
problem for micromagnetic simulations includ-
ing spin-transfer torque”. In: Journal of Applied
Physics 105(11) p. 113914. DOI: http://dx.doi.
org/10.1063/1.3126702

15.	Venkat, G, et al. 2013 “Proposal for a standard mi-
cromagnetic problem: Spin wave dispersion in a mag-
nonic waveguide”. In: IEEE Transactions on Magnetics
49.1 pp. 524–529. DOI: http://dx.doi.org/10.1109/
TMAG.2012.2206820

16.	Baker, A, et al. 2016 “Proposal of a micromagnetic
standard problem for ferromagnetic resonance simu-
lations”. In: arXiv preprint 1603.05419. URL: http://
arxiv.org/abs/1603.05419.

17.	Smith, J E and Nair, R. 2005 “The Architecture of
Virtual Machines”. In: Computer 38.5 pp. 32–38. DOI:
http://dx.doi.org/10.1109/MC.2005.173

18.	VM Depot https://vmdepot.msopentech.com. Ac-
cessed: 20 September 2016.

19.	Linux Containers (LXC). https://linuxcontainers.org.
Accessed: 20 September 2016.

20.	Xavier, M G, et al. 2013 “Performance evaluation of
container-based virtualization for high performance
computing environments”. In: Parallel, Distributed and
Network-Based Processing (PDP), 2013 21st Euromicro
International Conference on. IEEE. pp. 233–240. DOI:
http://dx.doi.org/10.1109/PDP.2013.41

21.	Walters, J P, et al. 2008 “A comparison of virtualiza-
tion technologies for HPC”. In: 22nd International Con-
ference on Advanced Information Networking and Ap-
plications (aina 2008). IEEE. pp. 861–868. DOI: http://
dx.doi.org/10.1109/AINA.2008.45

http://virtual-micromagnetics.readthedocs.io/en/1.0.3/getting-started-poweruser.html
http://virtual-micromagnetics.readthedocs.io/en/1.0.3/getting-started-poweruser.html
http://virtual-micromagnetics.readthedocs.io/en/1.0.3/getting-started-user.html
http://virtual-micromagnetics.readthedocs.io/en/1.0.3/getting-started-user.html
http://virtual-micromagnetics.readthedocs.io/en/1.0.3/developer-notes.html
http://virtual-micromagnetics.readthedocs.io/en/1.0.3/developer-notes.html
https://www.virtualbox.org/manual/ch01.html#
hostossupport
https://www.virtualbox.org/manual/ch01.html#
hostossupport
http://virtualmicromagnetics.org
http://virtualmicromagnetics.org
http://dx.doi.org/10.5281/zenodo.59518
http://dx.doi.org/10.5281/zenodo.59518
http://dx.doi.org/10.1038/nnano.2013.29
http://dx.doi.org/10.1038/srep11369
http://dx.doi.org/10.1088/0022-3727/33/15/201
http://dx.doi.org/10.1088/0022-3727/33/15/201
http://math.nist.gov/oommf/oommf_cites.html
http://arxiv.org/abs/1605.04339
http://arxiv.org/abs/1605.04339
http://math.nist.gov/oommf
http://dx.doi.org/10.1109/TMAG.2007.893843
http://dx.doi.org/10.1109/TMAG.2007.893843
http://dx.doi.org/10.1016/S0927-0256(03)00119-8
http://computationalmodelling.github.io/fidimag
http://dx.doi.org/10.1038/srep17137
http://dx.doi.org/10.1038/srep17137
http://dx.doi.org/10.1063/1.4945262
http://dx.doi.org/10.1063/1.4945262
http://www.ctcms.nist.gov/~rdm/stdplan.html
http://www.ctcms.nist.gov/~rdm/stdplan.html
http://dx.doi.org/10.1063/1.3126702
http://dx.doi.org/10.1063/1.3126702
http://dx.doi.org/10.1109/TMAG.2012.2206820
http://dx.doi.org/10.1109/TMAG.2012.2206820
http://arxiv.org/abs/1603.05419
http://arxiv.org/abs/1603.05419
http://dx.doi.org/10.1109/MC.2005.173
https://vmdepot.msopentech.com
https://linuxcontainers.org
http://dx.doi.org/10.1109/PDP.2013.41
http://dx.doi.org/10.1109/AINA.2008.45
http://dx.doi.org/10.1109/AINA.2008.45

Vousden et al: Virtual Micromagnetics Art. e41, p. 7 of 7

22.	Regola, N and Ducom, J C. 2010 “Recommendations
for virtualization technologies in high performance
computing”. In: Cloud Computing Technology and
Science (CloudCom), 2010 IEEE Second International
Conference on. IEEE. pp. 409–416. DOI: http://dx.doi.
org/10.1109/CloudCom.2010.71

23.	Jeffers, J and Reinders, J 2013 Intel Xeon Phi coproces-
sor high-performance programming. Newnes.

24. Fan, Z, et al. 2004 “GPU cluster for high perfor-
mance computing”. In: Proceedings of the 2004
ACM/IEEE conference on Supercomputing. IEEE Com-
puter Society. p. 47. DOI: http://dx.doi.org/10.1109/
SC.2004.26

25.	Kindratenko, V V, et al. 2009 “GPU clusters for high-
performance computing”. In: 2009 IEEE International
Conference on Cluster Computing and Workshops.
IEEE. pp. 1–8. DOI: http://dx.doi.org/10.1109/CLUS-
TR.2009.5289128

26.	Kákay, A, Westphal, E and Hertel, R. 2010 “Speed-
up of FEM micromagnetic simulations with graphical
processing units”. In: IEEE transactions on magnetics
46.6 pp. 2303–2306. DOI: http://dx.doi.org/10.1109/
TMAG.2010.2048016

27.	Li, S, Livshitz, B and Lomakin, V. 2010 “Graphics
processing unit accelerated micromagnetic solver”. In:
IEEE Transactions on Magnetics 46.6 pp. 2373–2375.
DOI: http://dx.doi.org/10.1109/TMAG.2010.2043504

28.	Grace: a Graphics Accelerated Micromagnetic Code.
http://ung.graceland.edu/~zhu/grace/Grace.htm. Ac-
cessed: 20 September 2016.

29.	Vansteenkiste, A, et al. 2014 “The design and verifica-
tion of MuMax3”. In: Aip Advances 4.10 p. 107133. DOI:
http://dx.doi.org/10.1063/1.4899186

30.	Dowty, M and Sugerman, J. 2009 “GPU virtualization
on VMware’s hosted I/O architecture”. In: ACM SIGOPS
Operating Systems Review 43.3 pp. 73–82. DOI: http://
dx.doi.org/10.1145/1618525.1618534

31.	Vagrant. https://www.vagrantup.com. Accessed: 20
September 2016.

32.	VirtualBox. https://www.virtualbox.org. Accessed: 20
September 2016.

33.	Ansible. https://www.ansible.com. Accessed: 20 Sep-
tember 2016.

34.	Jenkins. https://jenkins.io. Accessed: 20 September 2016.
35.	YAML Ain’t Markup Language. http://www.yaml.org.

Accessed: 20 September 2016.

How to cite this article: Vousden, M, Bisotti, M-A, Albert, M and Fangohr, H 2016 Virtual Micromagnetics: A Framework
for Accessible and Reproducible Micromagnetic Simulation. Journal of Open Research Software, 4: e41, DOI: http://dx.doi.
org/10.5334/jors.141

Submitted: 14 August 2016 Accepted: 30 September 2016 Published: 31 October 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://dx.doi.org/10.1109/CloudCom.2010.71
http://dx.doi.org/10.1109/CloudCom.2010.71
http://dx.doi.org/10.1109/SC.2004.26
http://dx.doi.org/10.1109/SC.2004.26
http://dx.doi.org/10.1109/CLUSTR.2009.5289128
http://dx.doi.org/10.1109/CLUSTR.2009.5289128
http://dx.doi.org/10.1109/TMAG.2010.2048016
http://dx.doi.org/10.1109/TMAG.2010.2048016
http://dx.doi.org/10.1109/TMAG.2010.2043504
http://ung.graceland.edu/~zhu/grace/Grace.htm
http://dx.doi.org/10.1063/1.4899186
http://dx.doi.org/10.1145/1618525.1618534
http://dx.doi.org/10.1145/1618525.1618534
https://www.vagrantup.com
https://www.virtualbox.org
https://www.ansible.com
https://jenkins.io
http://www.yaml.org
http://dx.doi.org/10.5334/jors.141
http://dx.doi.org/10.5334/jors.141
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	1.1 Introduction
	1.1.1 Use cases

	1.2 Implementation and architecture
	1.2.1 Virtual Machines and Simulation Distribution
	1.2.2 Linux Containers
	1.2.3 Effect of Virtual Machine use on Simulation Performance
	1.2.4 Build process
	1.2.5 Provisioning using Ansible

	1.3 Quality control

	(2) Availability
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive

	Code repository
	Other resources
	Language

	(3) Reuse potential
	Competing Interests
	Notes
	References
	Figure 1

