
Posch, S and Möller, B 2017 Alida – Advanced Library for Integrated Development of
Data Analysis Applications. Journal of Open Research Software, 5: 7, DOI: https://doi.
org/10.5334/jors.124

Journal of
open research software

SOFTWARE METAPAPER

Alida – Advanced Library for Integrated Development of
Data Analysis Applications
Stefan Posch and Birgit Möller
Institute of Computer Science, Faculty of the Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), DE
Corresponding author: Stefan Posch
(stefan.posch@informatik.uni-halle.de)

Data analysis procedures can often be modeled as a set of manipulation operations applied to input data
and resulting in transformed intermediate and result data. The Java library Alida is providing an advanced
development framework to support programmers in developing data analysis applications adhering to such
a scheme. The main intention of Alida is to foster re-usability by offering well-defined, unified, modular
APIs and execution procedures for operators, and to ease development by releasing developers from tedi-
ous tasks. Alida features automatic generation of handy graphical and command line user interfaces,
a built-in graphical editor for workflow design, and an automatic documentation of analysis pipelines.
Alida is available from its project webpage http://www.informatik.uni-halle.de/alida, on Github and via
our Maven server.

Keywords: Data Analysis; Programming Framework; Implementation; Reusability; Graphical User Inter-
faces; Command Line Interface; Processing History; Java Software Library
Funding Statement: The development of Alida was supported by core funding from the Martin Luther
University Halle-Wittenberg and the federal state of Saxony-Anhalt, respectively.

(1) Overview
Introduction
Automatic data analysis aims at cleaning, transform-
ing, and modelling data to gain useful information in
an application domain and for a specific problem state-
ment. This process frequently requires the combination
of various basic and advanced analysis steps into complex
workflows, and several software tools for workflow design
supporting this process on the user side are available
[4, 11, 10, 1]. They for example target at distributed, grid
and cluster computing, big data analytics, or on integrat-
ing data from different sources [2], and sometimes provide
end-users with functionality for graphically combining
analysis units into analysis workflows. However, solely
applying and combining existing algorithms is not always
sufficient to extract desired information from given data.
Especially as progress in science and research is often
linked to designing new experiments and acquiring new
types of experimental data, sophisticated analysis requires
the adaptation of existing or the development and investi-
gation of new data analysis algorithms.

The development of such tools is usually performed
by programmers in close collaboration with end-users
from the application side, and a close interaction during
the development process is essential. Consequently and

independent of the application domain, the programmer
is required to not only develop the algorithms themselves,
but he is also enforced to provide handy user interfaces
and integrate the user as close as possible into the devel-
opment process, e.g., by frequently releasing software
updates. Workflow tools like KNIME [1] and Triana [10] in
principal support the extension of their functionality pro-
grammatically. However, since they mainly focus on the
end-user programmers have to cope, e.g., with restrictions
on available data types and complex APIs.

To overcome these drawbacks and in contrast to these
tools, Alida (Advanced Library for Integrated Development
of Data Analysis Applications, [7, 9]) is a Java library which
specifically targets at programmers rather than end-users of
data analysis tools. It seeks to optimally support program-
mers in the process of developing and releasing new data
analysis algorithms in close collaboration with end-users.
To this end Alida defines a framework which allows pro-
grammers to easily implement new data analysis function-
ality in a modular fashion. It defines an API based on a very
general model of data analysis where manipulation and
transformation of input data into intermediate and final
result data is performed by operators with a certain func-
tionality. Every operator is fully specified by a set of param-
eters subsuming input data and configuration settings

https://doi.org/10.5334/jors.124
https://doi.org/10.5334/jors.124
mailto:stefan.posch@informatik.uni-halle.de
http://www.informatik.uni-halle.de/alida

Posch and Möller: Alida – Advanced Library for Integrated Development of Data Analysis ApplicationsArt. 7, p. 2 of 6

for the functionality of the operator. During data analysis
operators are applied sequentially, in parallel, or in a nested
fashion to the input data and produce output data accord-
ing to their configuration.

Based on this model Alida enforces only some few con-
straints on the implementation in order to release devel-
opers from reoccurring and tedious tasks like API design
and user interface development. All operators share a
common API for configuration and execution. On the one
hand this facilitates reuse of operators on the code level
and instant usage via the automatically generated com-
mand line user interface (see Fig. 2), e.g., for parameter
optimization via a scripting language. On the other hand
also graphical user interfaces are generated automatically
(Fig. 1) fostering close end-user interaction and a tight
feedback loop. Likewise all operators can automatically
be included as potential building blocks in Alida’s built-
in graphical workflow editor Grappa [3] (Fig. 3). Finally,
since all operators are configured and executed by the
same procedures automatic documentation of operator

configurations and consequently also complete analysis
pipelines is supported [6, 8].

The basic concepts of the Alida framework and its
implementation in the Java library have proven their prac-
tical suitability and relevance as fundament of MiToBo, a
toolbox of basic, intermediate and advanced image pro-
cessing and analysis operators and applications [5]. All of
the more than 150 operators in MiToBo are implemented
as Alida operators taking full benefit of the unified
interfaces and execution procedures and particularly of
the automatically generated user interfaces.

Implementation and Architecture
The abstract class ALDOperator lays the foundation
for Alida’s object-oriented design for data analysis. It is
designed to enable Alida’s capabilities to automatically
generate user interfaces, for graphical programming, and
automatic documentation.

All operators to be implemented in Alida are required
to extend this class. All data to be processed by an operator,

Figure 1: Screenshot of some automatically generated graphical user interfaces for configuration and execution of
Alida operators.

Figure 2: Sample call of an operator from command line. The operator ApplyToMatrix is executed to apply
an operator to a 2D array supplied on the command line. The parameter summarizeOp expects as value an
ALDOperator which summarizes a 1D array, and here ALDArrayMean is specified computing the mean. The
parameter summarizeMode is of enumeration type, and in this case row-wise summarization requested. The output
is sent to standard output, but can be redirected to a file as well.

Posch and Möller: Alida – Advanced Library for Integrated Development of Data Analysis Applications Art. 7, p. 3 of 6

controlling its manipulation, or to be returned as result
are consistently denoted as parameters in Alida. For
each parameter a member variable is defined and Java’s
annotation mechanism is used to declare these members
as parameters and specify their various properties. Java’s
reflection mechanism is exploited to implement meth-
ods for querying an operator for its parameters including
data types and properties, as well as generic getter and
setter methods for all parameters. The abstract method
operate() of ALDOperator contains the data
processing functionality and needs to be overridden
by each operator implementation. The abstract class
ALDOperator implements the method runOp()
which is the only admissible way to invoke an operator.
This allows to keep track of all operator invocations.

For all data processing algorithms implemented as
Alida operators graphical and command line interfaces
are instantly available to the users. To automatically gener-
ate these interfaces an operator needs to be queried for its

parameters and their properties as stated above. In addi-
tion it is necessary to query values for parameters from the
user, to instantiate parameter objects from these values,
and to present output parameter values to the user, e.g.,
graphically or via console. As this depends on the specific
data type and the set of potential parameter data types is
unknown in advance, Alida incorporates a mechanism
to link this I/O knowledge to specific data types. This is
facilitated via so-called data I/O providers which provide
the functionality for a given data type or set of data types
and register to Alida’s framework using Java’s annota-
tions. Currently, Alida features general purpose provid-
ers for all primitive data types, enumeration types, arrays,
collections, and so-called parameterized classes. An arbi-
trary class may be declared as parameterized class, and any
subset of its member variables declared as class param-
eters, both via annotations. This is sufficient for Alida’s
general purpose provider to handle this class as an opera-
tor parameter if providers for the class parameters exist.

Figure 3: Screenshot of the graphical workflow editor Grappa, showing a demo workflow shipped with Alida. To the
left a partial tree of available operators is displayed to choose from.

Figure 4: The processing graph for the workflow in Fig. 3. Each operator invocation is represented by a blue or red
rectangle. A red rectangle indicates that an operator was collapsed to hide nested operator calls. Light and dark green
ellipses are input and output ports respectively of an operator, gray triangles depict data ports representing newly
generated data. To the right the information for the operator SmooothData1D is shown including the values of
input parameters and software version.

Posch and Möller: Alida – Advanced Library for Integrated Development of Data Analysis ApplicationsArt. 7, p. 4 of 6

Likewise operators may act as parameters of other opera-
tors. If necessary additional providers may easily be added
without the necessity to modify Alida’s core. Figs. 1 and
2 show examples for graphical respectively command line
UIs automatically generated by Alida.
Alida extends the operator concept towards combin-

ing operators into more complex workflows. A workflow
is defined as a combination of operators to be executed
sequentially, in parallel, or in a nested fashion. This con-
cept is implemented as the class ALDWorkflow which
extends ALDOperator. The graphical programming edi-
tor Grappa is included in Alida to interactively design
workflows in an intuitive fashion. The data processing
pipeline is naturally modelled as a graph, where opera-
tors are represented by nodes, and the parameters of dif-
ferent operators are connected by edges to describe the
flow of data. All data processing algorithms implemented
as an Alida operator are right away available as opera-
tor nodes in Grappa and form the building blocks for
workflows (see Fig. 3 for an example). When connect-
ing parameters of different nodes the validity is verified.
For example, an input parameter may have at most one
incoming edge, and the data types of parameters con-
nected by an edge need to be compatible. Data propa-
gated along an edge may be converted on user request
if an appropriate converter is implemented. For example
Alida includes functionality to convert an array to a col-
lection. The set of converters may be extended in analogy
to data I/O providers. In general the operate() method
of a workflow object invokes all operators of the workflow
in topological order and forwards output data between
operators according to the data flow. In addition partial
execution of the workflow is supported.
Alida also includes automatic process documentation

of an analysis procedure which is supposed to contain all
information necessary to recover the results from the same
input data at a later point in time. Since each operator exe-
cution is realized invoking the generic runOp() method,
the processing pipeline can be understood as a subgraph
of the dynamic call graph of the analysis process. This call
graph may also be interpreted as a hierarchical graph where
each invocation of an operator is represented by a node.
Besides the input data provided by the data flow between
operators, in addition all control settings and also metadata
like software versions are fully automatically retrieved dur-
ing processing and represented. At any point in time the
relevant portion of this processing graph may be retrieved
and made explicit in terms of XML representations. This
representation may be stored for archival purposes to, e.g.,
extract relevant information for publication. Alida also
includes Chipory (see Alida’s homepage) to graphically
display the processing graph and to inspect, e.g., parameter
settings (see Fig. 4 for an example).

Quality Control
The Alida library is actively developed since 2010 and
has reached a mature state. The core has converged to
a stable status and new features are integrated very
diligently. The core functionality of Alida and particu-
larly the components of the graphical user interfaces

are mainly tested manually, partially relying on test
operators specifically designed to test a certain func-
tionality. Feedback may be submitted via a bug track-
ing system and using Github’s pull requests. In addition,
since Alida forms the base of the Microscope Image
Analysis Toolbox MiToBo (http://www.informatik.uni-
halle.de/mitobo), its development is also significantly
triggered and supported by feedback, bug reports and
feature wishes from the users of MiToBo [5]. This sig-
nificantly adds to the robustness and stability of the
Alida library. The tests and the use of MiToBo subsum-
ing Alida have been performed on different operating
systems (64-bit Linux, Windows XP and 7, OS X) and with
different Java versions.

(2) Availability
Project Homepage
http://www.informatik.uni-halle.de/alida.

Operating System
Alida runs on different versions of Linux, OS X, and
Windows.

Programming Language
Java, version 1.8.

Additional system requirements
None.

Dependencies
The Alida distribution is shipped with all libraries
required to make use of Alida’s complete functionality.
For own developments based on Alida a Maven server1

hosts the latest artifacts keeping track of dependencies
automatically.

List of contributors
Birgit Möller
Stefan Posch

Software location
Archive
Name: Zenodo Research Archive
Title: Alida – Advanced Library for Integrated
Development of Data Analysis Applications: v2.7
URL: https://zenodo.org/record/47586
Persistent identifier: https://doi.org/10.5281/
zenodo.47586
Licence: GNU General Public License, Version 3
Publisher: Stefan Posch, Birgit Möller
Artifact Version: 2.7
Date published: 15/03/2016

Code repository
Name: Github
Title: alida
Identifier: https://github.com/alida-hub/alida
Licence: GNU General Public License, Version 3
Publisher: Birgit Möller, Stefan Posch
Date published: 14/06/2015

http://www.informatik.uni-halle.de/mitobo
http://www.informatik.uni-halle.de/mitobo
http://www.informatik.uni-halle.de/alida
https://zenodo.org/record/47586
https://doi.org/10.5281/zenodo.47586
https://doi.org/10.5281/zenodo.47586
https://github.com/alida-hub/alida

Posch and Möller: Alida – Advanced Library for Integrated Development of Data Analysis Applications Art. 7, p. 5 of 6

Maven repository server
Name: Apache Archiva Repository Server
Title: de.unihalle.informatik.Alida
Identifier: https://moon.informatik.uni-halle.de/
archiva/
Licence: GNU General Public License, Version 3
Publisher: Birgit Möller, Stefan Posch
Date published: snapshots and releases are continu-
ously published

Language
English

(3) Reuse Potential
The overall target of the Alida library is to provide a
framework for developing modular, easy-to-use and par-
ticularly reusable data analysis software. Consequently,
re-usability is the inherent key paradigm which coins
the design and implementation of Alida in all respects.
Moreover, this re-usability is not restricted to a specific
research field, rather Alida is suitable for developments
in all domains where data analysis coincides with Alida’s
concept of operators performing data manipulations.

Besides this conceptual perspective Alida also aims
to foster re-usability from a technical point-of-view. As
mentioned above Maven is used to automatically resolve
dependencies. Moreover on the website of Alida in the
‘Downloads’ section a template Maven project2 can be
found which is readily configured for immediate use in
own projects. Finally, the open source strategy of Alida
and the GPL licensing concept inherently guarantee a
high degree of flexibility and adaptivity of Alida which
renders it easy to even adjust the core functionality to new
areas and fields of application if necessary.

Acknowledgements
The authors would like to thank Oliver Greß, Markus Glaß,
and Danny Misiak for numerous valuable discussions on
concepts, architectures and features of Alida over the
whole time of the library’s formation, implementation
and fine-tuning.

Notes
	 1	 https://moon.informatik.uni-halle.de/archiva/#

welcome.
	 2	 http://www2.informatik.uni-halle.de/agprbio/alida/

downloads/alida-project-template-maven-1.2-src.zip.

Competing Interests
The authors have no competing interests to declare.

References
1.	 Berthold, M R, Cebron, N, Dill, F, Gabriel, T R,

Kötter, T, Meinl, T, Ohl, P, Thiel, K and Wiswedel,
B 2009 KNIME – The Konstanz Information Miner:

version 2.0 and beyond. ACM SIGKDD Explorations
Newsletter, 11(1): 26–31, DOI: https://doi.
org/10.1145/1656274.1656280

2.	 Curcin, V and Ghanem, M 2008 Scientific workflow
systems – can one size fit all? In 2008 Cairo
International Biomedical Engineering Conference,
pages 1–9, Dec 2008. DOI: https://doi.org/10.1109/
cibec.2008.4786077

3.	 Kirchner, S, Posch, S and Möller, B 2012 Graphical
programming in Alida and ImageJ 2.0 with Grappa.
In Proc. of ImageJ User & Developer Conference,
pages 138–143, Mondorf-les-Bains, Luxembourg,
October.

4.	 Ludäscher, B, Altintas, I, Berkley, C, Higgins, D,
Jaeger, E, Jones, M, Lee, E A, Tao, J and Zhao, Y
2006 Scientific workflow management and the Kepler
system. Concurrency and Computation: Practice and
Experience, 18(10): 1039–1065,. DOI: https://doi.
org/10.1002/cpe.994

5.	 Möller, B, Glaß, M, Misiak, D and Posch, S 2016
MiToBo – A Toolbox for Image Processing and
Analysis. Journal of Open Research Software, 4(1): p.
e17, DOI: https://doi.org/10.5334/jors.103

6.	 Möller, B, Greß, O and Posch, S 2011 Knowing
What Happened – Automatic Documentation of
Image Analysis Processes. In Crowley, J, Draper, B and
Thonnat, M. (Eds.), Proceedings of 8th International
Conference on Computer Vision Systems, volume
6962 of LNCS, pages 1–10, Sophia Antipolis, France,
Springer.

7.	 Möller, B and Posch, S 2013 A Framework
Unifying the Development of Image Analysis
Algorithms and Associated User Interfaces. In
Proc. of 13th IAPR International Conference on
Machine Vision Applications, pages 447–450, Kyoto,
Japan.

8.	 Posch, S and Möller, B 2012 Automatic Generation of
Processing Histories using Alida. In Proc. of ImageJ User
& Developer Conference, pages 218–221, Mondorf-les-
Bains, Luxembourg, October.

9.	 Posch, S and Möller, B 2016 Design and
Implementation of the Alida Framework to Ease the
Development of Image Analysis Algorithms. Pattern
Recognition and Image Analysis, 26(1): 181–189,
DOI: https://doi.org/10.1134/S10546618160102
0X

10.	Taylor, I, Shields, M, Wang, I and Harrison, A
2007 The Triana Workflow Environment: Architecture
and Applications, pages 320–339. Springer,
London.

11.	Wolstencroft, K, Haines, R and Fellows, D et al 2013
The Taverna workflow suite: designing and executing
workflows of web services on the desktop, web or in
the cloud. Nucleic Acids Research,. DOI: https://doi.
org/10.1093/nar/gkt328

https://moon.informatik.uni-halle.de/archiva/
https://moon.informatik.uni-halle.de/archiva/
https://moon.informatik.uni-halle.de/archiva/#welcome
https://moon.informatik.uni-halle.de/archiva/#welcome
http://www2.informatik.uni-halle.de/agprbio/alida/downloads/alida-project-template-maven-1.2-src.zip
http://www2.informatik.uni-halle.de/agprbio/alida/downloads/alida-project-template-maven-1.2-src.zip
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1109/cibec.2008.4786077
https://doi.org/10.1109/cibec.2008.4786077
https://doi.org/10.1002/cpe.994
https://doi.org/10.1002/cpe.994
https://doi.org/10.5334/jors.103

https://doi.org/10.1134/S105466181601020X
https://doi.org/10.1134/S105466181601020X
https://doi.org/10.1093/nar/gkt328
https://doi.org/10.1093/nar/gkt328

Posch and Möller: Alida – Advanced Library for Integrated Development of Data Analysis ApplicationsArt. 7, p. 6 of 6

How to cite this article: Posch, S and Möller, B 2017 Alida – Advanced Library for Integrated Development of Data Analysis
Applications. Journal of Open Research Software, 5: 7, DOI: https://doi.org/10.5334/jors.124

Submitted: 15 March 2016 Accepted: 13 February 2017 Published: 23 March 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.5334/jors.124
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	The abstract class ALDOperator lays the foundation
	Quality Control

	(2) Availability
	Project Homepage
	Operating System
	Programming Language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive

	Code repository
	Maven repository server
	Language

	(3) Reuse Potential
	Acknowledgements
	Notes
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

