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ABSTRACT
Opfunu is a Python library designed to address the need for a comprehensive suite of 
benchmark functions for numerical optimization algorithms. It offers a rich collection 
of functions, including all those used in the Congress on Evolutionary Computation 
(CEC) competition between 2005 and 2022, alongside over 200 traditional functions 
with varying complexities and dimensions. Opfunu is built on top of Numpy for ease 
of use, fast computation, and adheres to a modular structure. The library is freely 
available on GitHub, promoting open-source development and encouraging the reuse 
of these benchmark functions by researchers and students working in the field of 
optimization algorithms.
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(1) OVERVIEW

INTRODUCTION
In the realm of numerical optimization, benchmark 
functions play a pivotal role in evaluating and comparing 
the performance of optimization algorithms [1]. These 
functions serve as standardized test cases, allowing 
researchers and practitioners to gauge the efficacy and 
robustness of different optimization techniques across 
a variety of problem domains. By subjecting algorithms 
to a diverse set of benchmark functions, researchers can 
assess their ability to handle various challenges such as 
multimodality, nonlinearity, and high dimensionality, 
thereby gaining insights into strengths and limitations 
of their algorithms. One notable initiative in the realm 
of benchmark functions is the Congress on Evolutionary 
Computation (CEC) competition [2]. The CEC competition, 
held annually since 2005, has been instrumental in 
driving advancements in optimization research by 
providing a platform for the evaluation and comparison 
of optimization algorithms on standardized benchmark 
functions. These benchmark functions, meticulously 
curated by the competition organizers, represent real-
world optimization problems and pose significant 
challenges to algorithm developers. However, despite the 
importance of benchmark functions in driving innovation 
and progress in optimization research, there has been a 
notable gap in readily accessible and diverse benchmark 
function libraries. This gap underscores the critical need 
for a comprehensive suite of benchmark functions readily 
available to researchers and practitioners alike.

To address this gap, we introduce opfunu, an open-
source Python library meticulously designed to provide 
a vast array of benchmark functions for numerical 
optimization tasks. Opfunu offers a rich collection of 
benchmark functions, including those featured in the 
CEC competition and over 200 traditional functions 
characterized by varying complexities and dimensions. 
Opfunu is built on top of Numpy [3] library, a powerful 
numerical computing library for Python, ensuring ease of 
use, computational efficiency, and seamless integration 
with existing Python-based optimization frameworks. Its 
modular structure enhances flexibility, allowing users 
to easily incorporate custom benchmark functions or 
extend the library’s functionality as needed.

Opfunu has been utilized in various research studies 
across the optimization community, facilitating rigorous 
experimentation, algorithmic development, and 
comparative analysis. For instance, [4] utilized CEC2014 
benchmark functions to evaluate and compare the 
Hybridization of Galactic Swarm and Evolution Whale 
Optimization model. In study [5] proposed the nQSV-
net model for workload modeling and demonstrated 
the effective optimization capabilities of the Improved 
Queuing search algorithm on the CEC2014 benchmark 
function set. Additionally [6], selected 20 benchmark 

functions from CEC2014 and CEC2015 to assess the 
Improved Sea Lion Optimization algorithm against other 
techniques. Moreover [7], proposed a specialized library 
for metaheuristic algorithms and utilized functions 
from CEC2017 to evaluate the performance of these 
algorithms. Notably, recent metaheuristic algorithms, 
such as the Q-learning based Vegetation Evolution 
algorithm [8], have incorporated Opfunu library functions 
for testing on the CEC2020 function set, as well as 
engineering problems and WSN coverage optimization 
problems. Similarly [9], proposed the strengthened 
RIME (rime-ice) algorithm and utilized functions from 
the Opfunu library’s CEC2020 set. Furthermore [10], 
proposed the evolutionary multi-mode slime mold 
optimization algorithm for addressing continuous 
optimization problems and validated its performance 
using the CEC2013 function set from Opfunu. These 
studies collectively highlight the utility and versatility of 
Opfunu in advancing optimization research and fostering 
algorithmic innovation.

In comparison with existing software packages, 
modules, and libraries offering similar functionalities, 
Opfunu stands out due to its comprehensive collection 
of benchmark functions. Additionally, Opfunu provides 
extensive documentation, user guides, examples, 
test cases, and notably, it is easy to install and use. 
For example [11], is a package that only includes the 
CEC2017 benchmark functions, is not packaged as a 
library, and lacks documentation, making it challenging 
for users to understand and utilize effectively. Similarly, 
[12], [13], and [14] are three modules containing sets of 
benchmark functions for multi-dimensional problems, 
but they are not packaged as libraries and lack user guides 
and examples. [15] includes unimodal and multimodal 
benchmark functions but lacks a documentation website 
and is not packaged as a library. [16] provides basic 
benchmark functions in the Julia programming language 
but lacks examples and a documentation website. 
Moreover [17], offers a library providing standard 
functions for single and multi-objective optimization 
problems. However, despite having documentation and 
examples, it is written in the R programming language 
and only offers standard functions without the inclusion 
of CEC function sets. Opfunu, on the other hand, not only 
provides a comprehensive range of benchmark functions 
but also offers clear documentation, ease of installation, 
and usage, making it a standout choice for researchers 
and practitioners in the field of optimization.

IMPLEMENTATION AND ARCHITECTURE
Opfunu is implemented in Python, leveraging the 
powerful numerical computing capabilities of the NumPy 
library. The software follows a modular architecture, 
designed to provide flexibility, extensibility, and ease of 
maintenance. Figure 1 provides a visual representation 
of Opfunu’s modular architecture and the relationships 
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between its components. Within this architecture, several 
key components are outlined, including the `benchmark` 
module and three primary packages: “name_based,” 
“cec_based,” and “utils.”

•	 benchmark module: Contains a class named 
`Benchmark` that all functions in the library must 
inherit from. The aim is to utilize object-oriented 
programming inheritance to reuse code and optimize 
the library structure.

•	 name_based package: Contains all traditional 
benchmark functions (excluding CEC functions). 
It is divided into 26 modules corresponding to the 
alphabet. For instance, functions with names starting 
with the letter “a” are placed in the “a_func” module, 
such as “Ackley01”, “Adjiman”, “Alpine01”, etc. 
Similarly, all traditional functions are distinguished 
based on their names.

•	 cec_based package: Contains all CEC functions 
spanning from 2005 to 2022. It includes a `cec` 
module that contains the `CecBenchmark` class. 
This class inherits from the `Benchmark` class and 
serves as the parent class for all CEC benchmark 
functions. The rationale behind this class is to 
accommodate the unique characteristics of CEC 
benchmark functions, such as external data loading 
requirements and the need for bias value settings. 
The package is further divided into submodules based 

on the year CEC was organized, such as cec2014, 
cec2015, etc. The classes defining CEC functions are 
separated by the year of the CEC competition.

•	 utils package: Contains helper functions used 
throughout the library components to promote 
code reuse. It has two main modules: operator and 
visualize. The operator module contains functions 
for performing common mathematical operations 
and frequently reused functions, while the visualize 
module provides functions for visualizing benchmark 
functions in 2D or 3D.

CODE TEMPLATE
Users can access more indepth examples either in the 
Github repository or in the documentation. In this section, 
we provide code templates for integrating benchmark 
functions into some popular libraries such as ScikitOpt 
[18], Mealpy [19], and Opytimizer [20].

In the example below, we use the Differential Evolution 
(DE) algorithm in the ScikitOpt library to solve the F10 
function in the CEC 2015 competition. As can be seen, 
the first 2 lines define the F10 function from the `opfunu` 
library, while the remaining lines define the DE algorithm 
from the ScikitOpt library. Metaheuristic algorithms 
typically require a fitness (objective) function and need 
to know the lower bounds and upper bounds for the 
decision variables of the problem. Therefore, the function 
classes in Opfunu provide these attributes, and users only 

Figure 1 The overview structure of Opfunu library.
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need to call them for use. For instance: f10.evaluate is the 
fitness function, f10.lb and f10.ub are the lower bounds 
and upper bounds for the decision variables.

Similarly to the example above, the following example 
utilizes the Genetic Algorithm (GA) to solve the F3 
problem in the CEC 2017 competition. As can be seen, the 
first 2 lines still define the F3 problem from the opfunu 
library, while the remaining lines define the GA algorithm 
from the Mealpy library. Here, f3.evaluate represents the 
fitness function, and f3.lb and f3.ub denote the lower 
bounds and upper bounds of the decision variables.

Similarly to the examples above, in the following example, 
we utilize the Artificial Bee Colony (ABC) algorithm from 
the Opytimizer library to solve the F5 problem in the 
CEC 2022 competition. As can be observed, the first 2 
lines define the F5 function from the opfunu library. 
The remaining lines define the ABC algorithm from the 
Opytimizer library. Here, f5.ndim indicates the number 
of decision variables, f5.evaluate represents the fitness 
value, and f5.lb and f5.ub denote the lower and upper 
bounds of the problem.

Through the examples above, it is evident that integrating 
the opfunu library into other optimization algorithm 
libraries is straightforward.

QUALITY CONTROL
Opfunu undergoes rigorous testing to ensure its reliability, 
functionality, and performance across various scenarios. 
We utilize pytest library for both functional and component 
testing to verify the integrity of the software. These 
tests involve running the library with various benchmark 
functions and comparing the obtained results against 
known optimal solutions or established benchmarks.

Additionally, Opfunu is tested in multiple environments 
to ensure compatibility and reliability across different 
platforms. These environments include:

•	 Local development environments, such as Windows, 
macOS, and Linux, using popular Python distributions 
like pip and Pypi.

•	 Continuous integration (CI) pipelines, where 
automated tests are run on cloud-based platforms 
like GitHub Actions to validate code changes and 
ensure consistency across different code branches. 
Opfunu’s testing primarily occurs in different Python 
environments like Python 3.7, 3.8, 3.9, 3.10, and 3.11.

To assist users in quickly assessing the software’s 
correctness, Opfunu provides the following resources:

•	 Documentation: Opfunu’s documentation includes 
detailed instructions on installing the software, using 
its features, and interpreting the output.

•	 Example Usage: Opfunu includes example scripts 
demonstrating how to use its functionalities with 
sample input data. These examples showcase how to 
import the library, select functions, and execute them 
with sample data.

•	 Test Script: A well-structured test script is included 
within the codebase. This script demonstrates how 
to run functional tests, allowing users to verify the 
library’s integrity on their machines.

•	 Sample Code Snippets: The GitHub repository may 
also include sample code snippets that users can 
directly employ to test Opfunu’s functionalities with 
various benchmark functions.

These testing and support mechanisms ensure Opfunu’s 
reliability, functionality, and ease of use for researchers 
and practitioners in the optimization community.

(2) AVAILABILITY

OPERATING SYSTEM
This package can be run on any operating system where 
python can be run (GNU/Linux, Mac OSX, Windows).
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PROGRAMMING LANGUAGE
python 3.7+

ADDITIONAL SYSTEM REQUIREMENTS
None

DEPENDENCIES
numpy >= 1.16.5, matplotlib >= 3.3.0, Pillow >= 9.1.0, 
requests >= 2.27.0

LIST OF CONTRIBUTORS
Nguyen Van Thieu

SOFTWARE LOCATION
Archive
	 Name: Zenodo
	� Persistent identifier: https://zenodo.org/

doi/10.5281/zenodo.3620960
	� Licence: Creative Commons Attribution 4.0 

International
	 Publisher: Nguyen Van Thieu
	 Version published: 1.0.2
	 Date published: 22/03/24

Code repository
	 Name: Github
	� Identifier: https://github.com/thieu1995/opfunu
	� Licence: GNU General Public License (GPL) V3 license
	 Date published: 06/12/2019

LANGUAGE
English

(3) REUSE POTENTIAL

Opfunu, with its comprehensive collection of benchmark 
functions and user-friendly design, holds significant 
potential for reuse by researchers both within and 
outside the field of optimization. Below, we outline 
several potential use cases for the software:

•	 Benchmarking Optimization Algorithms: Opfunu 
provides a diverse set of benchmark functions 
suitable for evaluating and comparing optimization 
algorithms. Researchers across various domains, 
including machine learning, operations research, 
and engineering, can leverage Opfunu to assess the 
performance of their optimization techniques on 
standardized test cases.

•	 Educational Purposes: Opfunu serves as a valuable 
tool for teaching and learning about optimization 
problems. Students and instructors can leverage the 
library to explore various function types, understand 
optimization challenges, and test different algorithms.

•	 The empirical evidence indicates that numerous 
studies have utilized the Opfunu library, as 

exemplified by [21–25]. The quantity of such 
implementations continues to increase daily, 
demonstrating the utility of the proposed library. 
Moreover, as of the time of manuscript preparation, 
Opfunu has surpassed 100,000 downloads on PyPI.

Opfunu is designed to be flexible and extensible, allowing 
users to modify or extend its functionality to suit their specific 
research needs. Researchers interested in contributing to 
Opfunu or extending its capabilities can do so by:

•	 Adding New Benchmark Functions: Researchers can 
contribute novel benchmark functions by following 
the existing code structure and submitting pull 
requests on the GitHub repository.

•	 Extending Functionality: The library’s modular design 
allows for the addition of new functionalities, such as 
visualization tools for analyzing optimization results. 
Contributions can be made through pull requests 
or by creating separate packages that interact with 
Opfunu.

•	 Reporting Issues and Bugs: Researchers encountering 
issues or bugs can report them on the GitHub 
repository’s issue tracker. This helps maintain the 
library’s quality and functionality.

•	 Enhancing documentation: Contributors can improve 
the documentation to provide clearer guidance on 
software usage, implementation details, and best 
practices.

•	 Integrating additional features: Opfunu can be 
extended to incorporate new features, such as 
visualization tools for analyzing optimization results 
or compatibility with other optimization frameworks.

There are several ways users can get the assistance include:

•	 Documentation: Opfunu’s documentation provides 
comprehensive guidance on software installation, 
usage, and customization.

•	 GitHub Repository: The project’s GitHub repository 
serves as a central hub for discussions, bug reports, 
feature requests, and contributions. Users can open 
issues or pull requests to report problems or propose 
changes.

•	 Community Forums: By actively engaging with 
the developer community and leveraging online 
resources, researchers can effectively utilize Opfunu 
and contribute to its ongoing development.
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