
SOFTWARE METAPAPER

CORRESPONDING AUTHOR:
Nguyen Van Thieu

Faculty of Computer Science,
PHENIKAA University, Yen
Nghia, Ha Dong, Hanoi, 12116,
Vietnam

thieu.nguyenvan@phenikaa-
uni.edu.vn

KEYWORDS:
Benchmark Functions; CEC
Functions; Mathematical
Optimization Functions

TO CITE THIS ARTICLE:
Van Thieu N 2024 Opfunu: An
Open-source Python Library
for Optimization Benchmark
Functions. Journal of Open
Research Software, 12: 8. DOI:
https://doi.org/10.5334/jors.508

Opfunu: An Open-
source Python Library for
Optimization Benchmark
Functions

NGUYEN VAN THIEU

ABSTRACT
Opfunu is a Python library designed to address the need for a comprehensive suite of
benchmark functions for numerical optimization algorithms. It offers a rich collection
of functions, including all those used in the Congress on Evolutionary Computation
(CEC) competition between 2005 and 2022, alongside over 200 traditional functions
with varying complexities and dimensions. Opfunu is built on top of Numpy for ease
of use, fast computation, and adheres to a modular structure. The library is freely
available on GitHub, promoting open-source development and encouraging the reuse
of these benchmark functions by researchers and students working in the field of
optimization algorithms.

mailto:thieu.nguyenvan@phenikaa-uni.edu.vn
mailto:thieu.nguyenvan@phenikaa-uni.edu.vn
https://doi.org/10.5334/jors.508
https://orcid.org/0000-0001-9994-8747

2Van Thieu Journal of Open Research Software DOI: 10.5334/jors.508

(1) OVERVIEW

INTRODUCTION
In the realm of numerical optimization, benchmark
functions play a pivotal role in evaluating and comparing
the performance of optimization algorithms [1]. These
functions serve as standardized test cases, allowing
researchers and practitioners to gauge the efficacy and
robustness of different optimization techniques across
a variety of problem domains. By subjecting algorithms
to a diverse set of benchmark functions, researchers can
assess their ability to handle various challenges such as
multimodality, nonlinearity, and high dimensionality,
thereby gaining insights into strengths and limitations
of their algorithms. One notable initiative in the realm
of benchmark functions is the Congress on Evolutionary
Computation (CEC) competition [2]. The CEC competition,
held annually since 2005, has been instrumental in
driving advancements in optimization research by
providing a platform for the evaluation and comparison
of optimization algorithms on standardized benchmark
functions. These benchmark functions, meticulously
curated by the competition organizers, represent real-
world optimization problems and pose significant
challenges to algorithm developers. However, despite the
importance of benchmark functions in driving innovation
and progress in optimization research, there has been a
notable gap in readily accessible and diverse benchmark
function libraries. This gap underscores the critical need
for a comprehensive suite of benchmark functions readily
available to researchers and practitioners alike.

To address this gap, we introduce opfunu, an open-
source Python library meticulously designed to provide
a vast array of benchmark functions for numerical
optimization tasks. Opfunu offers a rich collection of
benchmark functions, including those featured in the
CEC competition and over 200 traditional functions
characterized by varying complexities and dimensions.
Opfunu is built on top of Numpy [3] library, a powerful
numerical computing library for Python, ensuring ease of
use, computational efficiency, and seamless integration
with existing Python-based optimization frameworks. Its
modular structure enhances flexibility, allowing users
to easily incorporate custom benchmark functions or
extend the library’s functionality as needed.

Opfunu has been utilized in various research studies
across the optimization community, facilitating rigorous
experimentation, algorithmic development, and
comparative analysis. For instance, [4] utilized CEC2014
benchmark functions to evaluate and compare the
Hybridization of Galactic Swarm and Evolution Whale
Optimization model. In study [5] proposed the nQSV-
net model for workload modeling and demonstrated
the effective optimization capabilities of the Improved
Queuing search algorithm on the CEC2014 benchmark
function set. Additionally [6], selected 20 benchmark

functions from CEC2014 and CEC2015 to assess the
Improved Sea Lion Optimization algorithm against other
techniques. Moreover [7], proposed a specialized library
for metaheuristic algorithms and utilized functions
from CEC2017 to evaluate the performance of these
algorithms. Notably, recent metaheuristic algorithms,
such as the Q-learning based Vegetation Evolution
algorithm [8], have incorporated Opfunu library functions
for testing on the CEC2020 function set, as well as
engineering problems and WSN coverage optimization
problems. Similarly [9], proposed the strengthened
RIME (rime-ice) algorithm and utilized functions from
the Opfunu library’s CEC2020 set. Furthermore [10],
proposed the evolutionary multi-mode slime mold
optimization algorithm for addressing continuous
optimization problems and validated its performance
using the CEC2013 function set from Opfunu. These
studies collectively highlight the utility and versatility of
Opfunu in advancing optimization research and fostering
algorithmic innovation.

In comparison with existing software packages,
modules, and libraries offering similar functionalities,
Opfunu stands out due to its comprehensive collection
of benchmark functions. Additionally, Opfunu provides
extensive documentation, user guides, examples,
test cases, and notably, it is easy to install and use.
For example [11], is a package that only includes the
CEC2017 benchmark functions, is not packaged as a
library, and lacks documentation, making it challenging
for users to understand and utilize effectively. Similarly,
[12], [13], and [14] are three modules containing sets of
benchmark functions for multi-dimensional problems,
but they are not packaged as libraries and lack user guides
and examples. [15] includes unimodal and multimodal
benchmark functions but lacks a documentation website
and is not packaged as a library. [16] provides basic
benchmark functions in the Julia programming language
but lacks examples and a documentation website.
Moreover [17], offers a library providing standard
functions for single and multi-objective optimization
problems. However, despite having documentation and
examples, it is written in the R programming language
and only offers standard functions without the inclusion
of CEC function sets. Opfunu, on the other hand, not only
provides a comprehensive range of benchmark functions
but also offers clear documentation, ease of installation,
and usage, making it a standout choice for researchers
and practitioners in the field of optimization.

IMPLEMENTATION AND ARCHITECTURE
Opfunu is implemented in Python, leveraging the
powerful numerical computing capabilities of the NumPy
library. The software follows a modular architecture,
designed to provide flexibility, extensibility, and ease of
maintenance. Figure 1 provides a visual representation
of Opfunu’s modular architecture and the relationships

3Van Thieu Journal of Open Research Software DOI: 10.5334/jors.508

between its components. Within this architecture, several
key components are outlined, including the `benchmark`
module and three primary packages: “name_based,”
“cec_based,” and “utils.”

•	 benchmark module: Contains a class named
`Benchmark` that all functions in the library must
inherit from. The aim is to utilize object-oriented
programming inheritance to reuse code and optimize
the library structure.

•	 name_based package: Contains all traditional
benchmark functions (excluding CEC functions).
It is divided into 26 modules corresponding to the
alphabet. For instance, functions with names starting
with the letter “a” are placed in the “a_func” module,
such as “Ackley01”, “Adjiman”, “Alpine01”, etc.
Similarly, all traditional functions are distinguished
based on their names.

•	 cec_based package: Contains all CEC functions
spanning from 2005 to 2022. It includes a `cec`
module that contains the `CecBenchmark` class.
This class inherits from the `Benchmark` class and
serves as the parent class for all CEC benchmark
functions. The rationale behind this class is to
accommodate the unique characteristics of CEC
benchmark functions, such as external data loading
requirements and the need for bias value settings.
The package is further divided into submodules based

on the year CEC was organized, such as cec2014,
cec2015, etc. The classes defining CEC functions are
separated by the year of the CEC competition.

•	 utils package: Contains helper functions used
throughout the library components to promote
code reuse. It has two main modules: operator and
visualize. The operator module contains functions
for performing common mathematical operations
and frequently reused functions, while the visualize
module provides functions for visualizing benchmark
functions in 2D or 3D.

CODE TEMPLATE
Users can access more indepth examples either in the
Github repository or in the documentation. In this section,
we provide code templates for integrating benchmark
functions into some popular libraries such as ScikitOpt
[18], Mealpy [19], and Opytimizer [20].

In the example below, we use the Differential Evolution
(DE) algorithm in the ScikitOpt library to solve the F10
function in the CEC 2015 competition. As can be seen,
the first 2 lines define the F10 function from the `opfunu`
library, while the remaining lines define the DE algorithm
from the ScikitOpt library. Metaheuristic algorithms
typically require a fitness (objective) function and need
to know the lower bounds and upper bounds for the
decision variables of the problem. Therefore, the function
classes in Opfunu provide these attributes, and users only

Figure 1 The overview structure of Opfunu library.

4Van Thieu Journal of Open Research Software DOI: 10.5334/jors.508

need to call them for use. For instance: f10.evaluate is the
fitness function, f10.lb and f10.ub are the lower bounds
and upper bounds for the decision variables.

Similarly to the example above, the following example
utilizes the Genetic Algorithm (GA) to solve the F3
problem in the CEC 2017 competition. As can be seen, the
first 2 lines still define the F3 problem from the opfunu
library, while the remaining lines define the GA algorithm
from the Mealpy library. Here, f3.evaluate represents the
fitness function, and f3.lb and f3.ub denote the lower
bounds and upper bounds of the decision variables.

Similarly to the examples above, in the following example,
we utilize the Artificial Bee Colony (ABC) algorithm from
the Opytimizer library to solve the F5 problem in the
CEC 2022 competition. As can be observed, the first 2
lines define the F5 function from the opfunu library.
The remaining lines define the ABC algorithm from the
Opytimizer library. Here, f5.ndim indicates the number
of decision variables, f5.evaluate represents the fitness
value, and f5.lb and f5.ub denote the lower and upper
bounds of the problem.

Through the examples above, it is evident that integrating
the opfunu library into other optimization algorithm
libraries is straightforward.

QUALITY CONTROL
Opfunu undergoes rigorous testing to ensure its reliability,
functionality, and performance across various scenarios.
We utilize pytest library for both functional and component
testing to verify the integrity of the software. These
tests involve running the library with various benchmark
functions and comparing the obtained results against
known optimal solutions or established benchmarks.

Additionally, Opfunu is tested in multiple environments
to ensure compatibility and reliability across different
platforms. These environments include:

•	 Local development environments, such as Windows,
macOS, and Linux, using popular Python distributions
like pip and Pypi.

•	 Continuous integration (CI) pipelines, where
automated tests are run on cloud-based platforms
like GitHub Actions to validate code changes and
ensure consistency across different code branches.
Opfunu’s testing primarily occurs in different Python
environments like Python 3.7, 3.8, 3.9, 3.10, and 3.11.

To assist users in quickly assessing the software’s
correctness, Opfunu provides the following resources:

•	 Documentation: Opfunu’s documentation includes
detailed instructions on installing the software, using
its features, and interpreting the output.

•	 Example Usage: Opfunu includes example scripts
demonstrating how to use its functionalities with
sample input data. These examples showcase how to
import the library, select functions, and execute them
with sample data.

•	 Test Script: A well-structured test script is included
within the codebase. This script demonstrates how
to run functional tests, allowing users to verify the
library’s integrity on their machines.

•	 Sample Code Snippets: The GitHub repository may
also include sample code snippets that users can
directly employ to test Opfunu’s functionalities with
various benchmark functions.

These testing and support mechanisms ensure Opfunu’s
reliability, functionality, and ease of use for researchers
and practitioners in the optimization community.

(2) AVAILABILITY

OPERATING SYSTEM
This package can be run on any operating system where
python can be run (GNU/Linux, Mac OSX, Windows).

5Van Thieu Journal of Open Research Software DOI: 10.5334/jors.508

PROGRAMMING LANGUAGE
python 3.7+

ADDITIONAL SYSTEM REQUIREMENTS
None

DEPENDENCIES
numpy >= 1.16.5, matplotlib >= 3.3.0, Pillow >= 9.1.0,
requests >= 2.27.0

LIST OF CONTRIBUTORS
Nguyen Van Thieu

SOFTWARE LOCATION
Archive
	 Name: Zenodo
	� Persistent identifier: https://zenodo.org/

doi/10.5281/zenodo.3620960
	� Licence: Creative Commons Attribution 4.0

International
	 Publisher: Nguyen Van Thieu
	 Version published: 1.0.2
	 Date published: 22/03/24

Code repository
	 Name: Github
	� Identifier: https://github.com/thieu1995/opfunu
	� Licence: GNU General Public License (GPL) V3 license
	 Date published: 06/12/2019

LANGUAGE
English

(3) REUSE POTENTIAL

Opfunu, with its comprehensive collection of benchmark
functions and user-friendly design, holds significant
potential for reuse by researchers both within and
outside the field of optimization. Below, we outline
several potential use cases for the software:

•	 Benchmarking Optimization Algorithms: Opfunu
provides a diverse set of benchmark functions
suitable for evaluating and comparing optimization
algorithms. Researchers across various domains,
including machine learning, operations research,
and engineering, can leverage Opfunu to assess the
performance of their optimization techniques on
standardized test cases.

•	 Educational Purposes: Opfunu serves as a valuable
tool for teaching and learning about optimization
problems. Students and instructors can leverage the
library to explore various function types, understand
optimization challenges, and test different algorithms.

•	 The empirical evidence indicates that numerous
studies have utilized the Opfunu library, as

exemplified by [21–25]. The quantity of such
implementations continues to increase daily,
demonstrating the utility of the proposed library.
Moreover, as of the time of manuscript preparation,
Opfunu has surpassed 100,000 downloads on PyPI.

Opfunu is designed to be flexible and extensible, allowing
users to modify or extend its functionality to suit their specific
research needs. Researchers interested in contributing to
Opfunu or extending its capabilities can do so by:

•	 Adding New Benchmark Functions: Researchers can
contribute novel benchmark functions by following
the existing code structure and submitting pull
requests on the GitHub repository.

•	 Extending Functionality: The library’s modular design
allows for the addition of new functionalities, such as
visualization tools for analyzing optimization results.
Contributions can be made through pull requests
or by creating separate packages that interact with
Opfunu.

•	 Reporting Issues and Bugs: Researchers encountering
issues or bugs can report them on the GitHub
repository’s issue tracker. This helps maintain the
library’s quality and functionality.

•	 Enhancing documentation: Contributors can improve
the documentation to provide clearer guidance on
software usage, implementation details, and best
practices.

•	 Integrating additional features: Opfunu can be
extended to incorporate new features, such as
visualization tools for analyzing optimization results
or compatibility with other optimization frameworks.

There are several ways users can get the assistance include:

•	 Documentation: Opfunu’s documentation provides
comprehensive guidance on software installation,
usage, and customization.

•	 GitHub Repository: The project’s GitHub repository
serves as a central hub for discussions, bug reports,
feature requests, and contributions. Users can open
issues or pull requests to report problems or propose
changes.

•	 Community Forums: By actively engaging with
the developer community and leveraging online
resources, researchers can effectively utilize Opfunu
and contribute to its ongoing development.

ACKNOWLEDGEMENTS

We would like to thank the reviewers for valuable
feedbacks. We also thank the community of Opfunu
users for bug reports, improvement suggestions and
their general friendly support and encouragement for the
further development of Opfunu.

https://zenodo.org/doi/10.5281/zenodo.3620960
https://zenodo.org/doi/10.5281/zenodo.3620960
https://github.com/thieu1995/opfunu

6Van Thieu Journal of Open Research Software DOI: 10.5334/jors.508

COMPETING INTERESTS

The author has no competing interests to declare.

AUTHOR AFFILIATIONS

Nguyen Van Thieu orcid.org/0000-0001-9994-8747

Faculty of Computer Science, PHENIKAA University, Yen Nghia,

Ha Dong, Hanoi, 12116, Vietnam

REFERENCES

1.	 Digalakis JG, Margaritis KG. An experimental

study of benchmarking functions for genetic

algorithms. International Journal of Computer

Mathematics. 2002; 79(4): 403–416. DOI: https://doi.

org/10.1080/00207160210939

2.	 Liang JJ, Qu BY, Suganthan PN. Problem definitions and

evaluation criteria for the CEC 2014 special session and

competition on single objective real-parameter numerical

optimization. Computational Intelligence Laboratory,

Zhengzhou University, Zhengzhou China and Technical

Report, Nanyang Technological University, Singapore. 2013;

635(2): 2014.

3.	 Harris CR, Millman KJ, Van Der Walt SJ, Gommers

R, Virtanen P, Cournapeau D, Wieser E, Taylor J,

Berg S, Smith NJ, Kern R. Array programming with

NumPy. Nature. 2020; 585(7825): 357–362. DOI: https://

doi.org/10.1038/s41586-020-2649-2

4.	 Nguyen BM, Tran T, Nguyen T, Nguyen G. Hybridization

of galactic swarm and evolution whale optimization

for global search problem. IEEE Access. 2020;

8: 74991–75010. DOI: https://doi.org/10.1109/

ACCESS.2020.2988717

5.	 Nguyen BM, Hoang B, Nguyen T, Nguyen G. nQSV-Net: a

novel queuing search variant for global space search and

workload modeling. Journal of Ambient Intelligence and

Humanized Computing. 2021; 12: 27–46. DOI: https://doi.

org/10.1007/s12652-020-02849-4

6.	 Nguyen BM, Tran T, Nguyen T, Nguyen G. An improved sea

lion optimization for workload elasticity prediction with

neural networks. International Journal of Computational

Intelligence Systems. 2022; 15(1): 90. DOI: https://doi.

org/10.1007/s44196-022-00156-8

7.	 Van Thieu N, Mirjalili S. MEALPY: An open-source library

for latest meta-heuristic algorithms in Python. Journal of

Systems Architecture. 2023; 139: 102871. DOI: https://doi.

org/10.1016/j.sysarc.2023.102871

8.	 Zhong R, Peng F, Yu J, Munetomo M. Q-learning based

vegetation evolution for numerical optimization and

wireless sensor network coverage optimization. Alexandria

Engineering Journal. 2024; 87: 148–163. DOI: https://doi.

org/10.1016/j.aej.2023.12.028

9.	 Zhong R, Yu J, Zhang C, Munetomo M. SRIME: a

strengthened RIME with Latin hypercube sampling and

embedded distance-based selection for engineering

optimization problems. Neural Computing and

Applications. 2024; 1–20. DOI: https://doi.org/10.1007/

s00521-024-09424-4

10.	 Zhong R, Zhang E, Munetomo M. Evolutionary multi-mode

slime mold optimization: a hyper-heuristic algorithm

inspired by slime mold foraging behaviors. The Journal of

Supercomputing. 2024; 1–32. DOI: https://doi.org/10.1007/

s11227-024-05909-0

11.	 Tilley D. “CEC2017-py”. 2020. https://github.com/tilleyd/

cec2017-py.

12.	 Plevris V. “Collection30Functions”. 2021. https://github.

com/vplevris/Collection30Functions.

13.	 Ardeh MA. “BenchmarkFcns”. 2016. https://github.com/

mazhar-ansari-ardeh/BenchmarkFcns.

14.	 Diessner M. “benchfuncs”. 2022. https://github.com/

mikediessner/benchfuncs.

15.	 Tomochika K. “optimization-evaluation”. 2017. https://

github.com/tomochi222/optimization-evaluation.

16.	 Alexander R. “BenchmarkFunctions.jl”. 2020. https://

github.com/rbalexan/BenchmarkFunctions.jl.

17.	 Bossek J. “smoof”. 2015. https://github.com/jakobbossek/

smoof.

18.	 Fei G. “scikit-opt”. 2019. https://github.com/guofei9987/

scikit-opt.

19.	 Van Thieu N. “mealpy”. 2020. https://github.com/

thieu1995/mealpy.

20.	 de Rosa G. “opytimizer”. 2019. https://github.com/

gugarosa/opytimizer.

21.	 Nguyen T, Hoang B, Nguyen G, Nguyen BM. A new

workload prediction model using extreme learning

machine and enhanced tug of war optimization. Procedia

Computer Science. 2020; 170: 362–369. DOI: https://doi.

org/10.1016/j.procs.2020.03.063

22.	 Alfadhli J, Jaragh A, Alfailakawi MG, Ahmad I. FP-SMA:

an adaptive, fluctuant population strategy for slime

mould algorithm. Neural Computing and Applications.

2022; 34(13): 11163–11175. DOI: https://doi.org/10.1007/

s00521-022-07034-6

23.	 Van Thieu N, Oliva D, Pérez-Cisneros M. MetaCluster:

An open-source Python library for metaheuristic-based

clustering problems. SoftwareX. 2023; 24: 101597. DOI:

https://doi.org/10.1016/j.softx.2023.101597

24.	 Abed AM, AlArjani A, ElAttar S. Reduce the delivery time

and relevant costs in a chaotic requests system via lean-

Heijunka model to enhance the logistic Hamiltonian route.

Results in Engineering. 2024; 21: 101745. DOI: https://doi.

org/10.1016/j.rineng.2023.101745

25.	 Van Thieu N, Barma SD, Van Lam T, Kisi O, Mahesha

A. Groundwater level modeling using augmented

artificial ecosystem optimization. Journal of Hydrology.

2023; 617: 129034. DOI: https://doi.org/10.1016/j.

jhydrol.2022.129034

https://orcid.org/0000-0001-9994-8747
https://orcid.org/0000-0001-9994-8747
https://doi.org/10.1080/00207160210939
https://doi.org/10.1080/00207160210939
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/ACCESS.2020.2988717
https://doi.org/10.1109/ACCESS.2020.2988717
https://doi.org/10.1007/s12652-020-02849-4
https://doi.org/10.1007/s12652-020-02849-4
https://doi.org/10.1007/s44196-022-00156-8
https://doi.org/10.1007/s44196-022-00156-8
https://doi.org/10.1016/j.sysarc.2023.102871
https://doi.org/10.1016/j.sysarc.2023.102871
https://doi.org/10.1016/j.aej.2023.12.028
https://doi.org/10.1016/j.aej.2023.12.028
https://doi.org/10.1007/s00521-024-09424-4
https://doi.org/10.1007/s00521-024-09424-4
https://doi.org/10.1007/s11227-024-05909-0
https://doi.org/10.1007/s11227-024-05909-0
https://github.com/tilleyd/cec2017-py
https://github.com/tilleyd/cec2017-py
https://github.com/vplevris/Collection30Functions
https://github.com/vplevris/Collection30Functions
https://github.com/mazhar-ansari-ardeh/BenchmarkFcns
https://github.com/mazhar-ansari-ardeh/BenchmarkFcns
https://github.com/mikediessner/benchfuncs
https://github.com/mikediessner/benchfuncs
https://github.com/tomochi222/optimization-evaluation
https://github.com/tomochi222/optimization-evaluation
https://github.com/rbalexan/BenchmarkFunctions.jl
https://github.com/rbalexan/BenchmarkFunctions.jl
https://github.com/jakobbossek/smoof
https://github.com/jakobbossek/smoof
https://github.com/guofei9987/scikit-opt
https://github.com/guofei9987/scikit-opt
https://github.com/thieu1995/mealpy
https://github.com/thieu1995/mealpy
https://github.com/gugarosa/opytimizer
https://github.com/gugarosa/opytimizer
https://doi.org/10.1016/j.procs.2020.03.063
https://doi.org/10.1016/j.procs.2020.03.063
https://doi.org/10.1007/s00521-022-07034-6
https://doi.org/10.1007/s00521-022-07034-6
https://doi.org/10.1016/j.softx.2023.101597
https://doi.org/10.1016/j.rineng.2023.101745
https://doi.org/10.1016/j.rineng.2023.101745
https://doi.org/10.1016/j.jhydrol.2022.129034
https://doi.org/10.1016/j.jhydrol.2022.129034

7Van Thieu Journal of Open Research Software DOI: 10.5334/jors.508

TO CITE THIS ARTICLE:
Van Thieu N 2024 Opfunu: An Open-source Python Library for Optimization Benchmark Functions. Journal of Open Research Software,
12: 8. DOI: https://doi.org/10.5334/jors.508

Submitted: 24 March 2024 Accepted: 22 April 2024 Published: 22 May 2024

COPYRIGHT:
© 2024 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://doi.org/10.5334/jors.508
http://creativecommons.org/licenses/by/4.0/

