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ABSTRACT
ExpressInHost (https://gitlab.com/a.raguin/expressinhost) is a GTK/C++ based user 
friendly graphical interface that allows tuning the codon sequence of an mRNA 
for recombinant protein expression in a host microorganism. Heterologous gene 
expression is widely implemented in biotechnology companies and academic research 
laboratories. However, expression of recombinant proteins can be challenging. On the 
one hand, maximising translation speed is important, especially in scalable production 
processes relevant to biotechnology companies, but on the other hand, solubility 
problems often arise as a consequence, since translation ‘pauses’ might be key to allow 
the nascent polypeptide chain to fold appropriately. To address this challenge, we have 
developed a software that offers three distinct modes to tune codon sequences using 
the genetic code redundancy. The tuning strategies implemented take into account 
the specific tRNA resources of the host and that of the native organism. They balance 
rapid translation and native speed mimicking, which might be important to allow 
proper protein folding, thereby avoiding protein solubility problems.
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(1) OVERVIEW

INTRODUCTION
Recombinant protein expression consists in taking a gene 
of interest (called target gene) from an organism (called 
native organism) and to express it in another organism 
(called host organism). The purpose of recombinant 
protein expression is to extract and purify quickly large 
amounts of a target protein expressed in a selected host, 
for instance, an engineered microorganism. Recombinant 
proteins are complex and large molecules in comparison 
to traditional chemically produced drugs, allowing more 
sophisticated biochemical activity [1]. These properties 
open the door to new and successful therapy strategies, 
which started in 1982 with the first production of human 
insulin in Escherichia coli by Genentech [2]. In addition 
to pharmacology, recombinant proteins are widely 
used in industrial applications, from food additive [3], 
to glue and biofuel production [4]. Therefore, they are 
nowadays central in the development of biotechnologies. 
Although in theory recombinant protein expression 
is a straightforward process, in practice many pitfalls 
can surface [5]. To tackle them, tools derived from 
bioinformatics represent an attractive alternative that 
complements experimental studies.

Several software tools are available online for codon 
tuning. A number of them are patented and directly 
serve the commercial purpose of selling the tuned 
gene plasmids (e.g. GenSmart Design [6] and Genewiz 
[7]). In contrast, some other software tools are freely 
and openly released and sometimes accessible from 
online platforms [8] or downloadable as packages 
[9]. In between, one can find algorithms that are not 
open-source [10, 11], or should be requested from the 
authors [12]. For a more complete view on available 
software tools to optimise protein expression, please see 
[13, 14]. Many of those protein expression optimisation 
software tools are based on the tRNA Adaptation Index 
(tAI) [15]. It relates a codon to the abundance of the 
cognate tRNA, and it was inspired by the work of Sharp 
and Li on the Codon Adaptation Index (CAI) [16]. The 
latter determines whether a codon is present in highly 
expressed genes, and is motivated by seminal work 
initiated in the early 1980s, by pioneers like Ikemura, [17-
19] Gouy and Gautier [20], and Bennetzen and Hall [21]. 
Here we follow a parallel approach, where we propose 
a software tool, ExpressInHost, for recombinant protein 
synthesis optimisation based on two dimensionless 
quantities, namely the translation “speed index” and 
translation “rank index”. Both indices are based on 
tRNA Gene Copy Numbers and they allow us to analyse 
gene translation profiles across organisms. Specifically, 
with ExpressInHost, we do not only consider the native 
organism, but also its host, as well as other organisms. 
The central focus of ExpressInHost is to increase the 
recombinant protein synthesis rate while preserving 

proper protein folding. Towards it, we propose various 
hypotheses, that correspond to the distinct “Modes” of 
the software tool. Our overarching aim is to release as 
widely as possible this tool, such that our hypotheses 
can be tested in experimental set ups, for validation, and 
potential further developments.

ExpressInHost is a fully open source and freely 
accessible software that has been developed to address 
the challenge of recombinant protein expression. The 
software tool has been written with the programming 
language GTK/C++, and it is fully designed in a user-
friendly manner. The graphical user interface is 
complemented with an “Instructions window” that 
guides the user step by step. This tool results from our 
research project on predictive optimisation of biocatalyst 
production for high-value chemical manufacturing. The 
project focussed on heterologous protein production 
optimisation in Escherichia coli. Our cross-platform 
software can be further developed, and above all, it 
can easily be utilised by both industrial and academic 
groups without any programming background being 
required.

MODEL AND UNDERLYING HYPOTHESES
Translation speed profiles
The speed at which ribosomes translate is non-uniform 
along mRNAs, and several factors have been identified to 
influence this complex and not fully understood process. 
For instance, it has been shown that mRNA secondary 
structure is generally not a central factor [22]. Instead, 
the abundance of charged tRNAs is known to influence 
the ribosome decoding speed at each codon [23]. As 
a proxy, we assume that fast codons are decoded by 
abundant tRNAs while slow codons are decoded by rare 
tRNAs.

The model of translation that supports ExpressInHost 
[24–26] assumes that the time a ribosome needs to 
decode a certain codon is on average proportional to the 
abundance of its cognate tRNA. Since different tRNAs 
occur typically in different abundances in the cytoplasm, 
codons are assigned a translation speed index which 
depends on the concentration of their cognate tRNAs. 
It has been shown that the abundance of a certain 
tRNA correlates with its Gene Copy Number (GCN) [27]. 
Hence, the GCN is commonly used as a proxy for tRNA 
concentration.

Experimental data suggest that the translation rates 
of codons using the G-U wobble are reduced by 39% 
compared to their G-C counterparts. Analogously, codons 
using the wobble I-C and codons using the wobble I-A 
are reduced by 36% relative to their I-U counterparts [28, 
29]. For simplicity, in ExpressInHost a unique reduction 
rate applies for the calculation of the wobble base-
pairing. The translation speed index of a wobbly codon is 
reduced by 35% as compared to that of the counterpart 
cognate codon.
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In ExpressInHost, translation speed index is 
therefore assumed to be proportional to the GCN of 
the corresponding tRNA, also considering wobble base-
pairing. We assign a translation speed index si to each 
codon as follows:

=
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where GCNi is the GCN of the tRNA decoding the codon i, 
and Wi takes the value 0,65 if the tRNA binds to the codon 
using wobble base-pairing, and 1, otherwise. The sum in 
the denominator is taken over all 61 codons so that the 
translation speed indices assigned to each codon are in 
the range [0;1].

Additionaly, we define a rank index ri to rank the speed 
indices of synonymous codons for a specific amino acid. 
Some synonymous codons are translated by different 
tRNAs (e.g. in S. cerevisiae, there are 41 different tRNAs 
and 20 amino acids). For each amino acid, the rank 
index is normalised between 0 (slowest synonymous 
codon) and 1 (fastest synonymous codon), such that the 
rank index of any codon can be compared in different 
organisms. The rank index ri of a codon is defined as:
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where i runs from 1 to the number N of synonymous 
codons coding for the amino acid under consideration. 
GCNmin and GCNmax are the minimum and maximum GCN, 
respectively, of the isoacceptor tRNAs (decoding the 
same amino acid).

The purpose of the translation speed index si is to 
evaluate how slow (or fast) is a codon within a certain 
organism, while the rank index ri allows comparing 
exclusively synonymous codons, and within different 
organisms.

Protein folding
The impact of slow and fast codons on protein folding 
has been reviewed in [23]. In particular it has been 
found that: i) substitutions with synonymous codons 
that invert the programmed speed of mRNA translation, 
from either fast to slow or vice versa, are deleterious for 
folding and expression of the encoded protein [30–32]; 
ii) the distribution of slow-translated codons is precisely 
selected at specific positions along mRNA to facilitate co-
translational folding and translocation of the encoded 
protein [33–36]; and iii) regions of slow or fast translation 
in homologous proteins are conserved among species 
[37], whereby the selection of the nucleotide sequence is 
driven by preserving the translation pattern rather than 
conservation of the codon or amino acid identities [38].

Correct co-translational folding is key to guarantee 
proper protein function and avoid solubility problems. 

However, translation pausing does not necessarily 
correlate with correct folding, and long pausing can 
instead lead to translation mistakes, like frameshifting 
[39]. Therefore, the usage of slow codons and the 
patterning of translation speed profiles is a highly 
complex and not fully understood challenge. A simple 
working hypothesis is that it should satisfy apparently 
contradictory constraints: translation speed should be 
high to maximise production, but locally, it should be 
slow enough to allow for proper protein folding, without 
being too slow to avoid typical translation mistakes. 
In ExpressInHost, we assume that it is thus essential 
to control both the positioning and the strength of the 
pausing, in order to avoid mistranslation and misfolding.

Tuning translation speed for recombinant protein 
synthesis
As discussed above, the translation speed profile of an 
mRNA depends on the abundance of the tRNAs, and 
it is suggested to impact on protein folding. As the 
abundance of different tRNAs varies with the organism 
under consideration, in general, the translation speed 
profile of a certain mRNA will be different in a host 
organism compared to the one in the native organism. 
Considering the hypotheses taken for ExpressInHost, if 
we were only interested in maximising translation speed, 
we could simply choose the fastest synonymous codon 
for each amino acid along the mRNA, therefore taking 
into consideration only the tRNA abundances of the host 
organism. However, as mentioned above, that would 
potentially miss key translation positions that aid proper 
protein folding.

Importantly, in addition to the “pauses” (slow 
translation speed positions) reported in the experimental 
literature, in ExpressInHost we also formulate other 
hypotheses to identify key positions that might aid proper 
co-translational protein folding. The tuning procedures 
examine the translation speed profile of the mRNA in the 
native organism, and consider orthologous genes across 
a number of different organisms, to perform a similarity 
analysis among them. Where key positions are identified, 
instead of enforcing slowest possible speed, that could 
for instance lead to translation mistakes as reported 
above, we choose to mimic the translation speed as it has 
been evolved in the native organism. Therefore, in order 
to optimise heterologous protein expression, while at the 
same time preserving key translation positions that aid 
proper co-translational folding, we postulate that it is not 
enough to consider the abundances of tRNAs in the host 
organism, as typically done in other standard tools. To 
address this matter and propose alternative hypotheses, 
we developed three different codon tuning strategies for 
recombinant protein synthesis.

Mode 1: Direct mapping. This tuning mode mimics 
the translation speed profile from the native organism 
into the host organism, for all codons along the mRNA. 
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The assumption underlying this mode is that the native 
organism has naturally achieved the optimal trade-off 
between speed and accurate folding. Hence, we map the 
native translation speed profile into the host by choosing 
synonymous codons that have the closest possible rank 
index to the native ones.

Mode 2: Optimisation and conservation I. This 
tuning mode considers a protein sequence similarity 
analysis to identify conserved amino acids across a set 
of orthologous proteins from different organisms. The 
underlying assumption is that those conserved amino 
acids play a crucial role in protein function, and therefore, 
it is especially important to retain the native translation 
speed of their corresponding codons into the host 
organism. We call such a position along the sequence 
“conserved amino acid”, and we mimic the speed of 
the native codon in the tuned sequence by choosing a 
synonymous codon that has the closest possible rank 
index to the native one. For the rest of the codons along 
the sequence, this mode maximises the speed, i.e. it 
chooses the fastest possible synonymous codon (rank 
index = 1).

Mode 3: Optimisation and conservation II. This tuning 
mode also considers a set of orthologous proteins, but 
it identifies key co-translational folding positions along 
the mRNA sequence in a different way. It individually 
analyses the translation speed profile of each sequence in 
the set of orthologous proteins, and it determines where 
a slow translation codon (low speed index) is consistently 
used across the different organisms. For such a position, 
this tuning mode retains the native translation speed in 
the tuned sequence by choosing the synonymous codon 
that has the closest possible rank index to the native one. 
For the rest of the codons along the sequence, this mode 
maximises the speed, i.e. it chooses the fastest possible 
synonymous codon (rank index = 1). This mode therefore 
assumes that certain slow codons are crucial for protein 
folding, and that those are conserved throughout 
orthologous genes expressed in different organisms.

It should be noted that the different modes of 
ExpressInHost “tune” the nucleotide sequences provided 

by the user, but do not necessarily “optimise” them. For 
clarity, throughout this paper we call “optimised codons” 
exclusively those whose translation speed is maximised 
by the software (rank index = 1). Additionally, we call 
native sequences and native organisms all sequences 
and organisms that are input by the user, and we call 
tuned sequences those that are output by the software. 
The host organism is selected by the user as the 
microorganism in which input sequences are to be tuned.

IMPLEMENTATION AND ARCHITECTURE
A unique variant of the software is released. It is 
released as an executable file for Windows users 
(with all dependencies for the specific libraries of the 
graphical interface) and as source codes for Linux users. 
The software is deposited on Gitlab and Zenodo with a 
detailed Readme.md file, together with example files.

The software is structured in three distinct cpp codes 
that have clear distinct roles as illustrated in Figure 1.

The graphical user interface (GUI) (see Figure 2) is 
meant for the user to specify the input information, 
select the mode of the software, and collect output 
information. The input information requested depends 
on the tuning mode to be selected. The use of the GUI 
is explained in full detail in the expandable “Instructions 
window” (see Figure 3) that pops up as the software is 
launched. In brief, steps 1 to 5 of the GUI are used to input 
data on: the aligned amino acid sequences (relevant for 
tuning modes 2 and 3) (step 1), all nucleotide sequences 
(i.e. the target mRNA, and the orthologous ones used 
for the similarity analysis (relevant for tuning modes 2 
and 3)) (step 2), the list of all native organisms (that of 
the target mRNA, and those of the orthologous proteins 
(relevant for tuning modes 2 and 3)) (steps 3 and 4), 
and the host organism (5). Steps 6 and 7 are used to 
select the tuning mode and to trigger the tuning of the 
sequences, respectively. Steps 8 and 9 are used to display 
the outcomes of the tuning process.

The input tables needed for the tuning process are 
tables containing the GCN of the different tRNAs for each 
of the organisms considered, i.e. the host, and all native 

Figure 1 Diagram of the architecture of ExpressInHost.
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Figure 2 Graphical user interface of ExpressInHost.

Figure 3 Expandable Instructions window of ExpressInHost.
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organisms (that of the target mRNA, and those of the 
orthologous proteins (relevant for tuning modes 2 and 
3)). The code Process_tables.cpp uses those tables 
to compute the translation speed index si of each codon 
(Eq. 1) and its rank index ri (Eq. 2) for each organism. 
Additionally, for each codon, Process_tables.cpp 
determines whether it is slow or not in each organism 
in the following way: i) the median translation speed 
index is calculated for the organism, ii) the speed index 
range between the slowest codon and the median is 
calculated, iii) the threshold is set as 50% of that range, 
and iv) a codon is designated as slow if its speed index 
lies between the slowest codon and the threshold.

A library of those tRNA data tables is provided for 
several native organisms, and it is accessed by the user 
in a dropdown menu in step 3. The GUI also includes 
the possibility for the user to call non-listed native 
organisms in step 4. To do so, the user needs to construct 
the input table of tRNA data, in which codons decoded 
by wobble base-pairing should be indicated [28, 29]. 
The construction of input tRNA tables for alternative 
organisms is supported by template tables, and it is 
fully guided in the Readme.md file accompanying the 
software.

Process_funct.cpp performs the tuning of the 
target mRNA sequence and the orthologous ones 
according to the mode selected by the user. The main 
assumptions underpinning each of the three tuning modes 
are detailed in the Introduction. Here, we describe the 
main algorithmic steps followed in each of these modes.

Mode 1: Direct mapping. In this tuning mode, 
Process_funct.cpp: i) reads the target sequence 
codon by codon; ii) reads the rank index of each 
codon calculated by Process_tables.cpp from the 
tRNA table of the native organism; and iii) selects the 
synonymous codon with the closest rank index calculated 
Process_tables.cpp from the tRNA table of the host 
organism.

Mode 2: Optimisation and conservation I. In this 
tuning mode, Process_funct.cpp requests the user 
to provide an input file that contains the target mRNA 
sequence, and a set of orthologous sequences. In addition 
to this set of nucleotide sequences, the user must provide 

the corresponding aligned protein sequences, e.g. using 
Clustal [40], a freely available online tool developed by the 
European Bioinformatics Institute (EBML-BBI) that aligns 
sequences based on seeded guide trees (see Figure 4). In 
addition to aligning the sequences, Clustal indicates the 
degree of conservation of amino acids at every position 
along the analysed sequences. It defines three degrees 
of conservation that are each marked with a distinct 
symbol: asterisk (strong conservation), colon (medium 
conservation), and single dot (weak conservation). For 
simplicity, in ExpressInHost we only consider the highest 
degree of conservation of amino acids, which are the 
positions marked by an asterisk.

In this tuning mode, Process_funct.cpp performs 
the following steps: i) it aligns the codon sequences 
(target and orthologous) following the amino acid 
sequence alignment obtained with Clustal; ii) it identifies 
the codon positions of highly conserved amino acids 
according to the Clustal alignment, and it tags those 
positions; iii) it reads each nucleotide sequence (target 
and orthologous) codon by codon. If the codon position 
is not tagged, it replaces the codon by the fastest 
synonymous one (rank index = 1) in the host tRNA table. 
Otherwise, it searches for the host synonymous codon 
of closest rank index to the native one. Therefore, the 
tagged positions are preserved from speed maximisation, 
and instead they are tuned in the same way as in tuning 
mode 1 (Direct mapping).

Mode 3: Optimisation and conservation II. This tuning 
mode requests the same set of input files as for tuning 
mode 2: a set of nucleotide sequences that contains 
the target mRNA and its orthologous sequences, as 
well as the corresponding Clustal amino acid alignment. 
In this tuning mode, however, the Clustal alignment is 
exclusively used to align the nucleotide sequences.

In this tuning mode, Process_funct.cpp performs 
the successive steps: i) it aligns the codon sequences 
(target and orthologous) following the amino acid 
sequence alignment obtained with Clustal; ii) it reads the 
aligned nucleotide sequences codon by codon, and at 
each codon position it determines whether a slow codon 
is consistently used across the entire set of mRNAs (i.e. 
if at least 75% of the codons aligned at this position 

Figure 4 Example of Clustal alignment.
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are slow). If so, the position is tagged; iii) if the codon 
position is not tagged, it replaces the codon by the fastest 
synonymous one (rank index = 1) in the host tRNA table. 
Otherwise, it searches for the host synonymous codon 
of closest rank index to the native one. Therefore, the 
tagged positions are preserved from speed maximisation, 
and instead they are tuned in the same way as in tuning 
mode 1 (Direct mapping).

To enable comparative analysis of the whole set of 
orthologous sequences after tuning, and to take into 
account the fact that the position of the target sequence 
in the Clustal set depends on the alignment process, we 
choose to tune all input nucleotide sequences, instead 
of only tuning the target sequence. It means that the 
orthologous sequences provided in modes 2 and 3 
for similarity analysis are also tuned for expression in 
the host. Therefore, the first output file produced by 
ExpressInHost contains the tuned nucleotide sequence 
for each nucleotide sequence provided (target sequence 
alone, or together with orthologous genes (relevant 
for the modes 2 and 3)). The second file indicates how 
different is each tuned sequence in comparison to its 
native version, by providing the percentage of codons 
that have not been changed in the tuning procedure. 
In total, up to 10 sequences can be tuned at the same 
time, which can for instance be 1 target sequence and 9 
orthologous genes used for the similarity analysis.

QUALITY CONTROL
The GUI is accompanied by an “Instructions window” 
(see Figure 3), and, in case a bug is detected, a 
“Debugging window” pops up and informs the user on 
the bug detected, and on the actions to be taken to 
sort the problem. This is enabled by a total of 25 tests 

throughout the software. They verify that the user has 
properly filled the input information in the graphical 
interface, and that the format of the input files provided 
fulfils the requirements. Just to give a few examples, the 
software verifies that the input files can be found in the 
directory, that they are not empty or contain unexpected 
characters in the sequences, and it checks whether 
the number of amino acid sequences and nucleotide 
sequences in the respective input files are the same.

Case example
ExpressInHost is released with an example (a set of input 
files) that can be tuned using any of the three tuning 
modes and of the four host microorganisms included in 
the software. Fully detailed instructions on how to run 
this example are given in the Readme.md file deposited 
together with the software. This example is based on the 
protein Rad51-RecA-RadA from Homo sapiens.

Here, to provide some further details on this example, 
we select a portion of 10 codons of the protein (codons 
112 to 121), and we tune them for expression in the 
host organism Escherichia coli, using tuning mode 
2 (Optimisation and conservation I). For this tuning 
mode, the software requests mRNAs orthologous to 
the target from different organisms. We use Gallus 
gallus, Xenopus laevis, Danio rerio, Arabidopsis thaliana, 
Drosophila melanogaster, Saccharomyces cerevisiae, 
Caenorhabditis elegans, Methanocaldococcus jannaschii, 
and Staphylococcus aureus. In Table 1, we compare the 
native sequence in Homo sapiens with the sequence 
output by the tuning mode 2, and with the sequence 
in which each codon has been substituted by the 
fastest synonymous one in the host (fully optimised). 
Full optimisation is not a mode implemented in our 

POSITION INPUT: HOMO SAPIENS OUTPUT: ESCHERICHIA COLI

NATIVE/RANK INDEX FULL OPTIMISATION OPTIMISATION AND CONSERVATION I/RANK INDEX

112 *CUU/1 CUG *CUG/1

113 CAA CAA or CAG CAA or CAG

114 *GGU/0.46 GGC *GGU/0.53

115 *GGA/0.44 GGC *GGU/0.53

116 AUU AUC AUC

117 GAG GAA GAA

118 ACU ACC or ACG ACC or ACG

119 GGA GGC GGC

120 UCU UCC UCC

121 AUC AUC AUC

Table 1 Codons 112 to 121 of the protein Rad51-RecA-RadA from Homo sapiens in its native, fully optimised, and tuned by mode 2 
versions. The host organism used is Escherichia coli. Codons tagged in the mode 2 are highlighted by an asterisk and their rank index 
is indicated.
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software, since our approach focusses on capturing 
key positions that may aid co-translational folding. 
However, it is useful to present it here for illustration 
purposes. During full optimisation, codons of rank 
index = 1 are systematically selected along the entire 
sequence, i.e. the speed is maximised throughout. In 
Table 1, we highlight with an asterisk the codons that 
have been tagged by the tuning mode 2, and we give 
their rank index. For those codons, translation speed has 
been matched to the native translation speed. In that 
specific example, we observe three different scenarios: 
i) codons are not tagged, and therefore they are the 
same to those resulting from full optimisation (codons 
113, and 116–121); ii) codons are tagged and therefore 
their speed is not optimised (codons 114 and 115); iii) 
codons are tagged but their rank index is equal to one. 
Therefore, when mapping their translation speed into 
the host, the tuned codon is the same to that obtained 
through full optimisation (codon 112).

Important effects
The user should be aware of certain effects before 
running the software.

i) There are cases of synonymous codons decoded 
by different tRNAs, but with those different tRNAs 
being present at the same abundance (their GCN are 
the same). Hence, those codons have the same rank 
index, provided that their situation regarding base-pair 
wobbling is the same. We call such codons “equivalent 
codons”. Additionally, for mode 1, and tagged codons 
in modes 2 and 3, in the (unlikely) case that in the 
host tRNA table synonymous codons of different rank 
index are equally distant to the rank index of the 
native codon, these host codons are also considered as 
“equivalent codons”. For any of the tuning modes, when 
searching the appropriate tuned codon, the software 
randomly picks among “equivalent codons”, to avoid 
codon usage bias. This has three consequences. First, 
when the software directly maps the translation rank 
index of a native codon into the host (mode 1, and 
tagged codons in modes 2 and 3), if more than one 
codon can be chosen in the host (“equivalent codons”), 
and if the native codon is one of these options, it will 
not preferably be selected. Second, when repeatedly 
tuning a nucleotide sequence with the same tuning 
mode, and the same native and host organisms, the 
successive outcomes are most likely different. Third, 
if the native and the host are the same organism, the 
output sequence will most likely be different from the 
input one upon calling mode 1.

ii) For the modes 2 and 3, the number of orthologous 
sequences used for the similarity analysis has an effect 
on the outcome. The more sequences selected (up to 
ten including the target, in ExpressInHost), the better the 

statistics to assess the conservation, i.e. conservation 
of amino acids in mode 2, and conservation of slow 
translation codons (low speed indices) in mode 3. Also, 
the phylogenetic diversity of the native organisms in the 
set of orthologous sequences directly impacts on the 
number of tagged codons. These two consequences are 
illustrated in Figure 5, for the tuning mode 2. The figure is 
based on the case example provided with the software, 
and mentioned above (Rad51-RecA-RadA protein from 
Homo Sapiens). In Figure 5, starting from a set of 10 
orthologous sequences for the Rad51-RecA-RadA protein, 
the set is progressively reduced by removing one by one 
the orthologous proteins. At each step, the organism 
whose protein is removed is the most phylogenetically 
distant one, in comparison to Homo sapiens. By 
analysing the amino acid conservation at each step, we 
clearly see that picking a set of 10 sequences for highly 
diverse proteins (leftmost point) leads to much lower 
amino acid conservation than picking a set of 2 closely 
related species (rightmost point). As a consequence, 
respectively either 10% or 100% of the codons will be 
tagged, meaning that the tuned translation speed profile 
for these two extreme scenarios will be considerably 
different.

(2) AVAILABILITY

The software release can be downloaded from the gitlab 
repository https://gitlab.com/a.raguin/expressinhost.

Detailed instructions for installation and running are 
provided in the Readme.md file of the project.

OPERATING SYSTEM
*nix (tested on Ubuntu 20.04 LTS)
Windows (tested on Windows 10)

PROGRAMMING LANGUAGE
C++ making use of the GTK3 library for the user interface.

ADDITIONAL SYSTEM REQUIREMENTS
No

DEPENDENCIES
gtkmm 3.0

Windows only (Visual C++ redistributable for Visual 
Studio 2019)

LIST OF CONTRIBUTORS
Raguin, Adélaïde: Design, implementation, commenting, 
testing.

Department of Computer Sciences, Institute of 
Computational Cell Biology, Heinrich-Heine University, 
40225 Düsseldorf, Germany.

https://gitlab.com/a.raguin/expressinhost
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SOFTWARE LOCATION
Archive (e.g. institutional repository, general repository) 
(required – please see instructions on journal website 
for depositing archive copy of software in a suitable 
repository)

Name: Zenodo
Persistent identifier: 10.5281/zenodo.5113427
Licence: Creative Commons Attribution 4.0 

International
Publisher: Adélaïde Raguin
Version published: v0.1
Date published: 19/07/2021

Code repository (e.g. SourceForge, GitHub etc.) (required)
Name: Gitlab
Identifier: https://gitlab.com/a.raguin/expressinhost
Licence: GNU version 3
Date published: 19/07/2021

LANGUAGE
English

(3) REUSE POTENTIAL

ExpressInHost is conceived as a tool easily and freely 
accessible for users from any research or industrial 
domain interested in recombinant protein expression in 
a host microorganism. The GUI has been implemented 
precisely to facilitate the access to the software.

Two levels of further development are envisaged. 
First, from the GUI (in step 4) users can call new input 
table of tRNA data, in case their native organism of 
interest is not listed in the dropdown menu in step 3. 
However, the software does not include a GUI access to 
call host organisms different from those proposed. We 
made that choice since less diversity exists for the host 
microorganisms and the software already offers four of 
the most popular ones (E. coli, S. cerevisia, K. pastoris, 
and B. subtilis). Second, the source codes are extensively 
commented, such that users with programming 
background in C++ can easily get started with further 
development of the software. For instance, they might 
wish to process sets of orthologous genes larger than 10, 

Figure 5 Effects of the number of proteins and phylogenetic diversity in the input set of orthologous genes, shown for mode 2. The 
name of the native organism whose protein is removed from the set of orthologous sequences is shown on the abscissa, while the 
amino acid conservation is measured on the ordinate. The less proteins considered and the closer they are related, the more amino 
acids are conserved.

https://doi.org/10.5281/zenodo.5113427
https://gitlab.com/a.raguin/expressinhost
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or to express proteins in host microorganisms distinct to 
those currently proposed.

For support and minor extensions of the code, A.R. is 
available by email at the corresponding address. A.R. is 
also available by email if users encounter unexpected 
issues while using the software.
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