
SOFTWARE

METAPAPER

ExpressInHost: A Codon
Tuning Tool for the
Expression of Recombinant
Proteins in Host
Microorganisms

ADÉLAÏDE RAGUIN

IAN STANSFIELD

MARIA CARMEN ROMANO

ABSTRACT
ExpressInHost (https://gitlab.com/a.raguin/expressinhost) is a GTK/C++ based user
friendly graphical interface that allows tuning the codon sequence of an mRNA
for recombinant protein expression in a host microorganism. Heterologous gene
expression is widely implemented in biotechnology companies and academic research
laboratories. However, expression of recombinant proteins can be challenging. On the
one hand, maximising translation speed is important, especially in scalable production
processes relevant to biotechnology companies, but on the other hand, solubility
problems often arise as a consequence, since translation ‘pauses’ might be key to allow
the nascent polypeptide chain to fold appropriately. To address this challenge, we have
developed a software that offers three distinct modes to tune codon sequences using
the genetic code redundancy. The tuning strategies implemented take into account
the specific tRNA resources of the host and that of the native organism. They balance
rapid translation and native speed mimicking, which might be important to allow
proper protein folding, thereby avoiding protein solubility problems.

CORRESPONDING AUTHOR:

Adélaïde Raguin

Department of Computer
Sciences, Institute of
Computational Cell Biology,
Heinrich-Heine University,
40225 Düsseldorf, DE

adelaide.raguin@hhu.de

KEYWORDS:
Codon tuning; Recombinant
expression; Heterologous
proteins; Graphical User
Interface

TO CITE THIS ARTICLE:
Raguin A, Stansfield I, Romano
MC. 2023 ExpressInHost:
A Codon Tuning Tool
for the Expression of
Recombinant Proteins in Host
Microorganisms. Journal of
Open Research Software, 11: 2.
DOI: https://doi.org/10.5334/
jors.385

*Author affiliations can be found in the back matter of this article

https://gitlab.com/a.raguin/expressinhost
mailto:adelaide.raguin@hhu.de
https://doi.org/10.5334/jors.385
https://doi.org/10.5334/jors.385
https://orcid.org/0000-0002-7242-7906
https://orcid.org/0000-0002-6261-2147

2Raguin et al. Journal of Open Research Software DOI: 10.5334/jors.385

(1) OVERVIEW

INTRODUCTION
Recombinant protein expression consists in taking a gene
of interest (called target gene) from an organism (called
native organism) and to express it in another organism
(called host organism). The purpose of recombinant
protein expression is to extract and purify quickly large
amounts of a target protein expressed in a selected host,
for instance, an engineered microorganism. Recombinant
proteins are complex and large molecules in comparison
to traditional chemically produced drugs, allowing more
sophisticated biochemical activity [1]. These properties
open the door to new and successful therapy strategies,
which started in 1982 with the first production of human
insulin in Escherichia coli by Genentech [2]. In addition
to pharmacology, recombinant proteins are widely
used in industrial applications, from food additive [3],
to glue and biofuel production [4]. Therefore, they are
nowadays central in the development of biotechnologies.
Although in theory recombinant protein expression
is a straightforward process, in practice many pitfalls
can surface [5]. To tackle them, tools derived from
bioinformatics represent an attractive alternative that
complements experimental studies.

Several software tools are available online for codon
tuning. A number of them are patented and directly
serve the commercial purpose of selling the tuned
gene plasmids (e.g. GenSmart Design [6] and Genewiz
[7]). In contrast, some other software tools are freely
and openly released and sometimes accessible from
online platforms [8] or downloadable as packages
[9]. In between, one can find algorithms that are not
open-source [10, 11], or should be requested from the
authors [12]. For a more complete view on available
software tools to optimise protein expression, please see
[13, 14]. Many of those protein expression optimisation
software tools are based on the tRNA Adaptation Index
(tAI) [15]. It relates a codon to the abundance of the
cognate tRNA, and it was inspired by the work of Sharp
and Li on the Codon Adaptation Index (CAI) [16]. The
latter determines whether a codon is present in highly
expressed genes, and is motivated by seminal work
initiated in the early 1980s, by pioneers like Ikemura, [17-
19] Gouy and Gautier [20], and Bennetzen and Hall [21].
Here we follow a parallel approach, where we propose
a software tool, ExpressInHost, for recombinant protein
synthesis optimisation based on two dimensionless
quantities, namely the translation “speed index” and
translation “rank index”. Both indices are based on
tRNA Gene Copy Numbers and they allow us to analyse
gene translation profiles across organisms. Specifically,
with ExpressInHost, we do not only consider the native
organism, but also its host, as well as other organisms.
The central focus of ExpressInHost is to increase the
recombinant protein synthesis rate while preserving

proper protein folding. Towards it, we propose various
hypotheses, that correspond to the distinct “Modes” of
the software tool. Our overarching aim is to release as
widely as possible this tool, such that our hypotheses
can be tested in experimental set ups, for validation, and
potential further developments.

ExpressInHost is a fully open source and freely
accessible software that has been developed to address
the challenge of recombinant protein expression. The
software tool has been written with the programming
language GTK/C++, and it is fully designed in a user-
friendly manner. The graphical user interface is
complemented with an “Instructions window” that
guides the user step by step. This tool results from our
research project on predictive optimisation of biocatalyst
production for high-value chemical manufacturing. The
project focussed on heterologous protein production
optimisation in Escherichia coli. Our cross-platform
software can be further developed, and above all, it
can easily be utilised by both industrial and academic
groups without any programming background being
required.

MODEL AND UNDERLYING HYPOTHESES
Translation speed profiles
The speed at which ribosomes translate is non-uniform
along mRNAs, and several factors have been identified to
influence this complex and not fully understood process.
For instance, it has been shown that mRNA secondary
structure is generally not a central factor [22]. Instead,
the abundance of charged tRNAs is known to influence
the ribosome decoding speed at each codon [23]. As
a proxy, we assume that fast codons are decoded by
abundant tRNAs while slow codons are decoded by rare
tRNAs.

The model of translation that supports ExpressInHost
[24–26] assumes that the time a ribosome needs to
decode a certain codon is on average proportional to the
abundance of its cognate tRNA. Since different tRNAs
occur typically in different abundances in the cytoplasm,
codons are assigned a translation speed index which
depends on the concentration of their cognate tRNAs.
It has been shown that the abundance of a certain
tRNA correlates with its Gene Copy Number (GCN) [27].
Hence, the GCN is commonly used as a proxy for tRNA
concentration.

Experimental data suggest that the translation rates
of codons using the G-U wobble are reduced by 39%
compared to their G-C counterparts. Analogously, codons
using the wobble I-C and codons using the wobble I-A
are reduced by 36% relative to their I-U counterparts [28,
29]. For simplicity, in ExpressInHost a unique reduction
rate applies for the calculation of the wobble base-
pairing. The translation speed index of a wobbly codon is
reduced by 35% as compared to that of the counterpart
cognate codon.

3Raguin et al. Journal of Open Research Software DOI: 10.5334/jors.385

In ExpressInHost, translation speed index is
therefore assumed to be proportional to the GCN of
the corresponding tRNA, also considering wobble base-
pairing. We assign a translation speed index si to each
codon as follows:

=
*

=
*

å 0

,i i
i T

j j
j

GCN W
s

GCN W
 (1)

where GCNi is the GCN of the tRNA decoding the codon i,
and Wi takes the value 0,65 if the tRNA binds to the codon
using wobble base-pairing, and 1, otherwise. The sum in
the denominator is taken over all 61 codons so that the
translation speed indices assigned to each codon are in
the range [0;1].

Additionaly, we define a rank index ri to rank the speed
indices of synonymous codons for a specific amino acid.
Some synonymous codons are translated by different
tRNAs (e.g. in S. cerevisiae, there are 41 different tRNAs
and 20 amino acids). For each amino acid, the rank
index is normalised between 0 (slowest synonymous
codon) and 1 (fastest synonymous codon), such that the
rank index of any codon can be compared in different
organisms. The rank index ri of a codon is defined as:

,i i min min
i

max max min min

GCN W GCN W
r

GCN W GCN W

* *-
= * *-

 (2)

where i runs from 1 to the number N of synonymous
codons coding for the amino acid under consideration.
GCNmin and GCNmax are the minimum and maximum GCN,
respectively, of the isoacceptor tRNAs (decoding the
same amino acid).

The purpose of the translation speed index si is to
evaluate how slow (or fast) is a codon within a certain
organism, while the rank index ri allows comparing
exclusively synonymous codons, and within different
organisms.

Protein folding
The impact of slow and fast codons on protein folding
has been reviewed in [23]. In particular it has been
found that: i) substitutions with synonymous codons
that invert the programmed speed of mRNA translation,
from either fast to slow or vice versa, are deleterious for
folding and expression of the encoded protein [30–32];
ii) the distribution of slow-translated codons is precisely
selected at specific positions along mRNA to facilitate co-
translational folding and translocation of the encoded
protein [33–36]; and iii) regions of slow or fast translation
in homologous proteins are conserved among species
[37], whereby the selection of the nucleotide sequence is
driven by preserving the translation pattern rather than
conservation of the codon or amino acid identities [38].

Correct co-translational folding is key to guarantee
proper protein function and avoid solubility problems.

However, translation pausing does not necessarily
correlate with correct folding, and long pausing can
instead lead to translation mistakes, like frameshifting
[39]. Therefore, the usage of slow codons and the
patterning of translation speed profiles is a highly
complex and not fully understood challenge. A simple
working hypothesis is that it should satisfy apparently
contradictory constraints: translation speed should be
high to maximise production, but locally, it should be
slow enough to allow for proper protein folding, without
being too slow to avoid typical translation mistakes.
In ExpressInHost, we assume that it is thus essential
to control both the positioning and the strength of the
pausing, in order to avoid mistranslation and misfolding.

Tuning translation speed for recombinant protein
synthesis
As discussed above, the translation speed profile of an
mRNA depends on the abundance of the tRNAs, and
it is suggested to impact on protein folding. As the
abundance of different tRNAs varies with the organism
under consideration, in general, the translation speed
profile of a certain mRNA will be different in a host
organism compared to the one in the native organism.
Considering the hypotheses taken for ExpressInHost, if
we were only interested in maximising translation speed,
we could simply choose the fastest synonymous codon
for each amino acid along the mRNA, therefore taking
into consideration only the tRNA abundances of the host
organism. However, as mentioned above, that would
potentially miss key translation positions that aid proper
protein folding.

Importantly, in addition to the “pauses” (slow
translation speed positions) reported in the experimental
literature, in ExpressInHost we also formulate other
hypotheses to identify key positions that might aid proper
co-translational protein folding. The tuning procedures
examine the translation speed profile of the mRNA in the
native organism, and consider orthologous genes across
a number of different organisms, to perform a similarity
analysis among them. Where key positions are identified,
instead of enforcing slowest possible speed, that could
for instance lead to translation mistakes as reported
above, we choose to mimic the translation speed as it has
been evolved in the native organism. Therefore, in order
to optimise heterologous protein expression, while at the
same time preserving key translation positions that aid
proper co-translational folding, we postulate that it is not
enough to consider the abundances of tRNAs in the host
organism, as typically done in other standard tools. To
address this matter and propose alternative hypotheses,
we developed three different codon tuning strategies for
recombinant protein synthesis.

Mode 1: Direct mapping. This tuning mode mimics
the translation speed profile from the native organism
into the host organism, for all codons along the mRNA.

4Raguin et al. Journal of Open Research Software DOI: 10.5334/jors.385

The assumption underlying this mode is that the native
organism has naturally achieved the optimal trade-off
between speed and accurate folding. Hence, we map the
native translation speed profile into the host by choosing
synonymous codons that have the closest possible rank
index to the native ones.

Mode 2: Optimisation and conservation I. This
tuning mode considers a protein sequence similarity
analysis to identify conserved amino acids across a set
of orthologous proteins from different organisms. The
underlying assumption is that those conserved amino
acids play a crucial role in protein function, and therefore,
it is especially important to retain the native translation
speed of their corresponding codons into the host
organism. We call such a position along the sequence
“conserved amino acid”, and we mimic the speed of
the native codon in the tuned sequence by choosing a
synonymous codon that has the closest possible rank
index to the native one. For the rest of the codons along
the sequence, this mode maximises the speed, i.e. it
chooses the fastest possible synonymous codon (rank
index = 1).

Mode 3: Optimisation and conservation II. This tuning
mode also considers a set of orthologous proteins, but
it identifies key co-translational folding positions along
the mRNA sequence in a different way. It individually
analyses the translation speed profile of each sequence in
the set of orthologous proteins, and it determines where
a slow translation codon (low speed index) is consistently
used across the different organisms. For such a position,
this tuning mode retains the native translation speed in
the tuned sequence by choosing the synonymous codon
that has the closest possible rank index to the native one.
For the rest of the codons along the sequence, this mode
maximises the speed, i.e. it chooses the fastest possible
synonymous codon (rank index = 1). This mode therefore
assumes that certain slow codons are crucial for protein
folding, and that those are conserved throughout
orthologous genes expressed in different organisms.

It should be noted that the different modes of
ExpressInHost “tune” the nucleotide sequences provided

by the user, but do not necessarily “optimise” them. For
clarity, throughout this paper we call “optimised codons”
exclusively those whose translation speed is maximised
by the software (rank index = 1). Additionally, we call
native sequences and native organisms all sequences
and organisms that are input by the user, and we call
tuned sequences those that are output by the software.
The host organism is selected by the user as the
microorganism in which input sequences are to be tuned.

IMPLEMENTATION AND ARCHITECTURE
A unique variant of the software is released. It is
released as an executable file for Windows users
(with all dependencies for the specific libraries of the
graphical interface) and as source codes for Linux users.
The software is deposited on Gitlab and Zenodo with a
detailed Readme.md file, together with example files.

The software is structured in three distinct cpp codes
that have clear distinct roles as illustrated in Figure 1.

The graphical user interface (GUI) (see Figure 2) is
meant for the user to specify the input information,
select the mode of the software, and collect output
information. The input information requested depends
on the tuning mode to be selected. The use of the GUI
is explained in full detail in the expandable “Instructions
window” (see Figure 3) that pops up as the software is
launched. In brief, steps 1 to 5 of the GUI are used to input
data on: the aligned amino acid sequences (relevant for
tuning modes 2 and 3) (step 1), all nucleotide sequences
(i.e. the target mRNA, and the orthologous ones used
for the similarity analysis (relevant for tuning modes 2
and 3)) (step 2), the list of all native organisms (that of
the target mRNA, and those of the orthologous proteins
(relevant for tuning modes 2 and 3)) (steps 3 and 4),
and the host organism (5). Steps 6 and 7 are used to
select the tuning mode and to trigger the tuning of the
sequences, respectively. Steps 8 and 9 are used to display
the outcomes of the tuning process.

The input tables needed for the tuning process are
tables containing the GCN of the different tRNAs for each
of the organisms considered, i.e. the host, and all native

Figure 1 Diagram of the architecture of ExpressInHost.

5Raguin et al. Journal of Open Research Software DOI: 10.5334/jors.385

Figure 2 Graphical user interface of ExpressInHost.

Figure 3 Expandable Instructions window of ExpressInHost.

6Raguin et al. Journal of Open Research Software DOI: 10.5334/jors.385

organisms (that of the target mRNA, and those of the
orthologous proteins (relevant for tuning modes 2 and
3)). The code Process_tables.cpp uses those tables
to compute the translation speed index si of each codon
(Eq. 1) and its rank index ri (Eq. 2) for each organism.
Additionally, for each codon, Process_tables.cpp
determines whether it is slow or not in each organism
in the following way: i) the median translation speed
index is calculated for the organism, ii) the speed index
range between the slowest codon and the median is
calculated, iii) the threshold is set as 50% of that range,
and iv) a codon is designated as slow if its speed index
lies between the slowest codon and the threshold.

A library of those tRNA data tables is provided for
several native organisms, and it is accessed by the user
in a dropdown menu in step 3. The GUI also includes
the possibility for the user to call non-listed native
organisms in step 4. To do so, the user needs to construct
the input table of tRNA data, in which codons decoded
by wobble base-pairing should be indicated [28, 29].
The construction of input tRNA tables for alternative
organisms is supported by template tables, and it is
fully guided in the Readme.md file accompanying the
software.

Process_funct.cpp performs the tuning of the
target mRNA sequence and the orthologous ones
according to the mode selected by the user. The main
assumptions underpinning each of the three tuning modes
are detailed in the Introduction. Here, we describe the
main algorithmic steps followed in each of these modes.

Mode 1: Direct mapping. In this tuning mode,
Process_funct.cpp: i) reads the target sequence
codon by codon; ii) reads the rank index of each
codon calculated by Process_tables.cpp from the
tRNA table of the native organism; and iii) selects the
synonymous codon with the closest rank index calculated
Process_tables.cpp from the tRNA table of the host
organism.

Mode 2: Optimisation and conservation I. In this
tuning mode, Process_funct.cpp requests the user
to provide an input file that contains the target mRNA
sequence, and a set of orthologous sequences. In addition
to this set of nucleotide sequences, the user must provide

the corresponding aligned protein sequences, e.g. using
Clustal [40], a freely available online tool developed by the
European Bioinformatics Institute (EBML-BBI) that aligns
sequences based on seeded guide trees (see Figure 4). In
addition to aligning the sequences, Clustal indicates the
degree of conservation of amino acids at every position
along the analysed sequences. It defines three degrees
of conservation that are each marked with a distinct
symbol: asterisk (strong conservation), colon (medium
conservation), and single dot (weak conservation). For
simplicity, in ExpressInHost we only consider the highest
degree of conservation of amino acids, which are the
positions marked by an asterisk.

In this tuning mode, Process_funct.cpp performs
the following steps: i) it aligns the codon sequences
(target and orthologous) following the amino acid
sequence alignment obtained with Clustal; ii) it identifies
the codon positions of highly conserved amino acids
according to the Clustal alignment, and it tags those
positions; iii) it reads each nucleotide sequence (target
and orthologous) codon by codon. If the codon position
is not tagged, it replaces the codon by the fastest
synonymous one (rank index = 1) in the host tRNA table.
Otherwise, it searches for the host synonymous codon
of closest rank index to the native one. Therefore, the
tagged positions are preserved from speed maximisation,
and instead they are tuned in the same way as in tuning
mode 1 (Direct mapping).

Mode 3: Optimisation and conservation II. This tuning
mode requests the same set of input files as for tuning
mode 2: a set of nucleotide sequences that contains
the target mRNA and its orthologous sequences, as
well as the corresponding Clustal amino acid alignment.
In this tuning mode, however, the Clustal alignment is
exclusively used to align the nucleotide sequences.

In this tuning mode, Process_funct.cpp performs
the successive steps: i) it aligns the codon sequences
(target and orthologous) following the amino acid
sequence alignment obtained with Clustal; ii) it reads the
aligned nucleotide sequences codon by codon, and at
each codon position it determines whether a slow codon
is consistently used across the entire set of mRNAs (i.e.
if at least 75% of the codons aligned at this position

Figure 4 Example of Clustal alignment.

7Raguin et al. Journal of Open Research Software DOI: 10.5334/jors.385

are slow). If so, the position is tagged; iii) if the codon
position is not tagged, it replaces the codon by the fastest
synonymous one (rank index = 1) in the host tRNA table.
Otherwise, it searches for the host synonymous codon
of closest rank index to the native one. Therefore, the
tagged positions are preserved from speed maximisation,
and instead they are tuned in the same way as in tuning
mode 1 (Direct mapping).

To enable comparative analysis of the whole set of
orthologous sequences after tuning, and to take into
account the fact that the position of the target sequence
in the Clustal set depends on the alignment process, we
choose to tune all input nucleotide sequences, instead
of only tuning the target sequence. It means that the
orthologous sequences provided in modes 2 and 3
for similarity analysis are also tuned for expression in
the host. Therefore, the first output file produced by
ExpressInHost contains the tuned nucleotide sequence
for each nucleotide sequence provided (target sequence
alone, or together with orthologous genes (relevant
for the modes 2 and 3)). The second file indicates how
different is each tuned sequence in comparison to its
native version, by providing the percentage of codons
that have not been changed in the tuning procedure.
In total, up to 10 sequences can be tuned at the same
time, which can for instance be 1 target sequence and 9
orthologous genes used for the similarity analysis.

QUALITY CONTROL
The GUI is accompanied by an “Instructions window”
(see Figure 3), and, in case a bug is detected, a
“Debugging window” pops up and informs the user on
the bug detected, and on the actions to be taken to
sort the problem. This is enabled by a total of 25 tests

throughout the software. They verify that the user has
properly filled the input information in the graphical
interface, and that the format of the input files provided
fulfils the requirements. Just to give a few examples, the
software verifies that the input files can be found in the
directory, that they are not empty or contain unexpected
characters in the sequences, and it checks whether
the number of amino acid sequences and nucleotide
sequences in the respective input files are the same.

Case example
ExpressInHost is released with an example (a set of input
files) that can be tuned using any of the three tuning
modes and of the four host microorganisms included in
the software. Fully detailed instructions on how to run
this example are given in the Readme.md file deposited
together with the software. This example is based on the
protein Rad51-RecA-RadA from Homo sapiens.

Here, to provide some further details on this example,
we select a portion of 10 codons of the protein (codons
112 to 121), and we tune them for expression in the
host organism Escherichia coli, using tuning mode
2 (Optimisation and conservation I). For this tuning
mode, the software requests mRNAs orthologous to
the target from different organisms. We use Gallus
gallus, Xenopus laevis, Danio rerio, Arabidopsis thaliana,
Drosophila melanogaster, Saccharomyces cerevisiae,
Caenorhabditis elegans, Methanocaldococcus jannaschii,
and Staphylococcus aureus. In Table 1, we compare the
native sequence in Homo sapiens with the sequence
output by the tuning mode 2, and with the sequence
in which each codon has been substituted by the
fastest synonymous one in the host (fully optimised).
Full optimisation is not a mode implemented in our

POSITION INPUT: HOMO SAPIENS OUTPUT: ESCHERICHIA COLI

NATIVE/RANK INDEX FULL OPTIMISATION OPTIMISATION AND CONSERVATION I/RANK INDEX

112 *CUU/1 CUG *CUG/1

113 CAA CAA or CAG CAA or CAG

114 *GGU/0.46 GGC *GGU/0.53

115 *GGA/0.44 GGC *GGU/0.53

116 AUU AUC AUC

117 GAG GAA GAA

118 ACU ACC or ACG ACC or ACG

119 GGA GGC GGC

120 UCU UCC UCC

121 AUC AUC AUC

Table 1 Codons 112 to 121 of the protein Rad51-RecA-RadA from Homo sapiens in its native, fully optimised, and tuned by mode 2
versions. The host organism used is Escherichia coli. Codons tagged in the mode 2 are highlighted by an asterisk and their rank index
is indicated.

8Raguin et al. Journal of Open Research Software DOI: 10.5334/jors.385

software, since our approach focusses on capturing
key positions that may aid co-translational folding.
However, it is useful to present it here for illustration
purposes. During full optimisation, codons of rank
index = 1 are systematically selected along the entire
sequence, i.e. the speed is maximised throughout. In
Table 1, we highlight with an asterisk the codons that
have been tagged by the tuning mode 2, and we give
their rank index. For those codons, translation speed has
been matched to the native translation speed. In that
specific example, we observe three different scenarios:
i) codons are not tagged, and therefore they are the
same to those resulting from full optimisation (codons
113, and 116–121); ii) codons are tagged and therefore
their speed is not optimised (codons 114 and 115); iii)
codons are tagged but their rank index is equal to one.
Therefore, when mapping their translation speed into
the host, the tuned codon is the same to that obtained
through full optimisation (codon 112).

Important effects
The user should be aware of certain effects before
running the software.

i) There are cases of synonymous codons decoded
by different tRNAs, but with those different tRNAs
being present at the same abundance (their GCN are
the same). Hence, those codons have the same rank
index, provided that their situation regarding base-pair
wobbling is the same. We call such codons “equivalent
codons”. Additionally, for mode 1, and tagged codons
in modes 2 and 3, in the (unlikely) case that in the
host tRNA table synonymous codons of different rank
index are equally distant to the rank index of the
native codon, these host codons are also considered as
“equivalent codons”. For any of the tuning modes, when
searching the appropriate tuned codon, the software
randomly picks among “equivalent codons”, to avoid
codon usage bias. This has three consequences. First,
when the software directly maps the translation rank
index of a native codon into the host (mode 1, and
tagged codons in modes 2 and 3), if more than one
codon can be chosen in the host (“equivalent codons”),
and if the native codon is one of these options, it will
not preferably be selected. Second, when repeatedly
tuning a nucleotide sequence with the same tuning
mode, and the same native and host organisms, the
successive outcomes are most likely different. Third,
if the native and the host are the same organism, the
output sequence will most likely be different from the
input one upon calling mode 1.

ii) For the modes 2 and 3, the number of orthologous
sequences used for the similarity analysis has an effect
on the outcome. The more sequences selected (up to
ten including the target, in ExpressInHost), the better the

statistics to assess the conservation, i.e. conservation
of amino acids in mode 2, and conservation of slow
translation codons (low speed indices) in mode 3. Also,
the phylogenetic diversity of the native organisms in the
set of orthologous sequences directly impacts on the
number of tagged codons. These two consequences are
illustrated in Figure 5, for the tuning mode 2. The figure is
based on the case example provided with the software,
and mentioned above (Rad51-RecA-RadA protein from
Homo Sapiens). In Figure 5, starting from a set of 10
orthologous sequences for the Rad51-RecA-RadA protein,
the set is progressively reduced by removing one by one
the orthologous proteins. At each step, the organism
whose protein is removed is the most phylogenetically
distant one, in comparison to Homo sapiens. By
analysing the amino acid conservation at each step, we
clearly see that picking a set of 10 sequences for highly
diverse proteins (leftmost point) leads to much lower
amino acid conservation than picking a set of 2 closely
related species (rightmost point). As a consequence,
respectively either 10% or 100% of the codons will be
tagged, meaning that the tuned translation speed profile
for these two extreme scenarios will be considerably
different.

(2) AVAILABILITY

The software release can be downloaded from the gitlab
repository https://gitlab.com/a.raguin/expressinhost.

Detailed instructions for installation and running are
provided in the Readme.md file of the project.

OPERATING SYSTEM
*nix (tested on Ubuntu 20.04 LTS)
Windows (tested on Windows 10)

PROGRAMMING LANGUAGE
C++ making use of the GTK3 library for the user interface.

ADDITIONAL SYSTEM REQUIREMENTS
No

DEPENDENCIES
gtkmm 3.0

Windows only (Visual C++ redistributable for Visual
Studio 2019)

LIST OF CONTRIBUTORS
Raguin, Adélaïde: Design, implementation, commenting,
testing.

Department of Computer Sciences, Institute of
Computational Cell Biology, Heinrich-Heine University,
40225 Düsseldorf, Germany.

https://gitlab.com/a.raguin/expressinhost

9Raguin et al. Journal of Open Research Software DOI: 10.5334/jors.385

SOFTWARE LOCATION
Archive (e.g. institutional repository, general repository)
(required – please see instructions on journal website
for depositing archive copy of software in a suitable
repository)

Name: Zenodo
Persistent identifier: 10.5281/zenodo.5113427
Licence: Creative Commons Attribution 4.0

International
Publisher: Adélaïde Raguin
Version published: v0.1
Date published: 19/07/2021

Code repository (e.g. SourceForge, GitHub etc.) (required)
Name: Gitlab
Identifier: https://gitlab.com/a.raguin/expressinhost
Licence: GNU version 3
Date published: 19/07/2021

LANGUAGE
English

(3) REUSE POTENTIAL

ExpressInHost is conceived as a tool easily and freely
accessible for users from any research or industrial
domain interested in recombinant protein expression in
a host microorganism. The GUI has been implemented
precisely to facilitate the access to the software.

Two levels of further development are envisaged.
First, from the GUI (in step 4) users can call new input
table of tRNA data, in case their native organism of
interest is not listed in the dropdown menu in step 3.
However, the software does not include a GUI access to
call host organisms different from those proposed. We
made that choice since less diversity exists for the host
microorganisms and the software already offers four of
the most popular ones (E. coli, S. cerevisia, K. pastoris,
and B. subtilis). Second, the source codes are extensively
commented, such that users with programming
background in C++ can easily get started with further
development of the software. For instance, they might
wish to process sets of orthologous genes larger than 10,

Figure 5 Effects of the number of proteins and phylogenetic diversity in the input set of orthologous genes, shown for mode 2. The
name of the native organism whose protein is removed from the set of orthologous sequences is shown on the abscissa, while the
amino acid conservation is measured on the ordinate. The less proteins considered and the closer they are related, the more amino
acids are conserved.

https://doi.org/10.5281/zenodo.5113427
https://gitlab.com/a.raguin/expressinhost

10Raguin et al. Journal of Open Research Software DOI: 10.5334/jors.385

or to express proteins in host microorganisms distinct to
those currently proposed.

For support and minor extensions of the code, A.R. is
available by email at the corresponding address. A.R. is
also available by email if users encounter unexpected
issues while using the software.

FUNDING INFORMATION

This work was performed as part of the Innovate
UK project “Predictive optimisation of biocatalyst
production for high-value chemical manufacturing”
(Project Number TP101439). The current position of A.R.
is funded by the German federal and state programme
Professorinnenprogramms III for female scientists.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR CONTRIBUTIONS

Adélaïde Raguin: conceptualisation and formulation,
programming, development and testing of the software,
data collection, writing and reviewing of the manuscript.

Ian Stansfield: conceptualisation and formulation
of the ideas, data collection, supervision, project
administration and funding acquisition.

Maria Carmen Romano: conceptualisation and
formulation of the ideas, reviewing of the manuscript,
supervision, project administration and funding acquisition.

AUTHOR AFFILIATIONS
Adélaïde Raguin
Department of Computer Sciences, Institute of Computational
Cell Biology, Heinrich-Heine University, 40225 Düsseldorf, DE

Ian Stansfield orcid.org/0000-0002-7242-7906
Institute of Medical Sciences, School of Medicine, Medical Sciences
and Nutrition, University of Aberdeen, Aberbeen, AB25 2ZD, UK

Maria Carmen Romano orcid.org/0000-0002-6261-2147
Institute for Complex Systems and Mathematical Biology,
University of Aberdeen, Aberdeen, AB24 3UE, UK; Institute of
Medical Sciences, School of Medicine, Medical Sciences and
Nutrition, University of Aberdeen, Aberbeen, AB25 2ZD, UK

REFERENCES

1. Burnett MJB, Burnett AC. “Therapeutic recombinant

protein production in plants: Challenges and

opportunities”. Plants People Planet. 2020; 2: 121–132.

DOI: https://doi.org/10.1002/ppp3.10073

2. Baeshen NA, Baeshen MN, Sheikh A, Bora RS, Ahmed

MMM, Ramadan HAI, Saini KS, Redwan EM. “Cell factories

for insulin production”. Microb Cell Factories. 2014; 13: 141.

DOI: https://doi.org/10.1186/s12934-014-0141-0

3. Kieliszek M, Misiewicz A. “Microbial transglutaminase and

its application in the food industry”. Folia Microbiol. 2014; 59:

241–250. DOI: https://doi.org/10.1007/s12223-013-0287-x

4. Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R,

Baweja M, Shukla P. “Recent developments in synthetic

biology and metabolic engineering in microalgae towards

biofuel production”. Biotechnology for Biofuels. 2018; 11:

185. DOI: https://doi.org/10.1186/s13068-018-1181-1

5. Rosano GL, Ceccarelli EA. “Recombinant protein

expression in Escherichia coli: advances and challenges”.

Front. Microbiol. 2014; 5: 172. DOI: https://doi.org/10.3389/

fmicb.2014.00172

6. GenSmart Design by GenScript https://www.genscript.

com/gene-and-plasmid-construct-design.html.

7. Genewiz by Brooks Life Sciences https://www.genewiz.

com/en-GB/Public/Services/Gene-Synthesis/codon-

optimization.

8. Puigbò P, Guzmán E, Romeu A, Garcia-Vallvé S.

“OPTIMIZER: a web server for optimizing the codon usage

of DNA sequences”. Nucleic acids research. 2007; 35(Web

Server issue); W126–31. DOI: https://doi.org/10.1093/nar/

gkm219

9. Condon A, Thachuk C. “Efficient codon optimization with

motif engineering”. Journal of Discrete Algorithms. 2012; 16:

104–112. DOI: https://doi.org/10.1016/j.jda.2012.04.017

10. Satya RV, Mukherjee A, Ranga U. “A pattern matching

algorithm for codon optimization and CpG motif-

engineering in DNA expression vectors”. Computational

Systems Bioinformatics. CSB2003. Proceedings of the 2003

IEEE Bioinformatics Conference. CSB2003. 2003; 294–305.

DOI: https://doi.org/10.1109/CSB.2003.1227330

11. Huang Y, Lin T, Lu L, Cai F, Lin J, Jiang Y, Lin Y. “Codon

pair optimization (CPO): a software tool for synthetic gene

design based on codon pair bias to improve the expression

of recombinant proteins in Pichia pastoris”. Microbial Cell

Factories. 2021; 20: 209. DOI: https://doi.org/10.1186/

s12934-021-01696-y

12. Fuglsang A. “Codon optimizer: a freeware tool for codon

optimization”. Protein Expression and Purification. 2003;

31(2): 247–249. DOI: https://doi.org/10.1016/S1046-

5928(03)00213-4

13. Gould N, Hendy O, Papamichail D. “Computational tools

and algorithms for designing customized synthetic genes”.

Front. Bioeng. Biotechnol. 2014; 2: 41. DOI: https://doi.

org/10.3389/fbioe.2014.00041

14. Watts A, Sankaranarayanan S, Watts A, Raipuria RK.

“Optimizing protein expression in heterologous system:

Strategies and tools”. Meta Gene. 2021; 29: 100899. DOI:

https://doi.org/10.1016/j.mgene.2021.100899

15. dos Reis M, Savva R, Wernisch L. “Solving the riddle

of codon usage preferences: a test for translational

selection”. Nucleic Acids Res. 2004; 32(17): 5036–5044.

DOI: https://doi.org/10.1093/nar/gkh834

16. Sharp PM, Li WH. “The codon Adaptation Index–a

measure of directional synonymous codon usage bias, and

https://orcid.org/0000-0002-7242-7906
https://orcid.org/0000-0002-7242-7906
https://orcid.org/0000-0002-6261-2147
https://orcid.org/0000-0002-6261-2147
https://doi.org/10.1002/ppp3.10073
https://doi.org/10.1186/s12934-014-0141-0
https://doi.org/10.1007/s12223-013-0287-x
https://doi.org/10.1186/s13068-018-1181-1
https://doi.org/10.3389/fmicb.2014.00172
https://doi.org/10.3389/fmicb.2014.00172
https://www.genscript.com/gene-and-plasmid-construct-design.html
https://www.genscript.com/gene-and-plasmid-construct-design.html
https://www.genewiz.com/en-GB/Public/Services/Gene-Synthesis/codon-optimization
https://www.genewiz.com/en-GB/Public/Services/Gene-Synthesis/codon-optimization
https://www.genewiz.com/en-GB/Public/Services/Gene-Synthesis/codon-optimization
https://doi.org/10.1093/nar/gkm219
https://doi.org/10.1093/nar/gkm219
https://doi.org/10.1016/j.jda.2012.04.017
https://doi.org/10.1109/CSB.2003.1227330
https://doi.org/10.1186/s12934-021-01696-y
https://doi.org/10.1186/s12934-021-01696-y
https://doi.org/10.1016/S1046-5928(03)00213-4
https://doi.org/10.1016/S1046-5928(03)00213-4
https://doi.org/10.3389/fbioe.2014.00041
https://doi.org/10.3389/fbioe.2014.00041
https://doi.org/10.1016/j.mgene.2021.100899
https://doi.org/10.1093/nar/gkh834

11Raguin et al. Journal of Open Research Software DOI: 10.5334/jors.385

its potential applications”. Nucleic Acids Res. 1987; 15(3):

1281–1295. DOI: https://doi.org/10.1093/nar/15.3.1281

17. Ikemura T. “Codon usage and tRNA content in unicellular

and multicellular organisms”. Mol. Biol. Evol. 1985; 2(1): 13–34.

DOI: https://doi.org/10.1093/oxfordjournals.molbev.a040335

18. Ikemura T. “Correlation between the abundance of Escherichia

coli transfer RNAs and the occurrence of the respective codons

in its protein genes”. J. Mol. Biol. 1981; 146(1): 1–21. DOI:

https://doi.org/10.1016/0022-2836(81)90363-6

19. Ikemura T. “Correlation between the abundance of yeast

transfer RNAs and the occurrence of the respective codons

in protein genes. Differences in synonymous codon choice

patterns of yeast and Escherichia coli with reference to

the abundance of isoaccepting transfer RNAs”. J. Mol. Biol.

1982; 158(4): 573–597. DOI: https://doi.org/10.1016/0022-

2836(82)90250-9

20. Gouy M, Gautier C. “Codon usage in bacteria: correlation

with gene expressivity”. Nucleic Acids Res. 1982; 10(22):

7055–7074. DOI: https://doi.org/10.1093/nar/10.22.7055

21. Bennetzen JL, Hall BD. “Codon selection in yeast”. J.

Biol. Chem. 1982; 257(6): 3026–3031. DOI: https://doi.

org/10.1016/S0021-9258(19)81068-2

22. Ignatova Z, Narberhaus F. “Systematic probing of the

bacterial RNA structurome to reveal new functions”.

Curr. Opin. Microbiol. 2017; 36: 14–19. DOI: https://doi.

org/10.1016/j.mib.2017.01.003

23. Rauscher R, Ignatova Z. “Timing during translation

matters: synonymous mutations in human pathologies

influence protein folding and function”. Biochemical

Society Transactions, 2018; 46(4): 937–944. DOI: https://

doi.org/10.1042/BST20170422

24. Ciandrini L, Stansfield I, Romano MC. “Ribosome

traffic on mRNAs maps to gene ontology: genome-wide

quantification of translation initiation rates and polysome

size regulation”. PLoS Comput. Biol., 2013; 9(1): e1002866.

DOI: https://doi.org/10.1371/journal.pcbi.1002866

25. Brackley CA, Romano MC, Thiel M. “The dynamics of

supply and demand in mRNA translation”. PLoS Comput.

Biol, 2011; 7(10): e1002203. DOI: https://doi.org/10.1371/

journal.pcbi.1002203

26. McFarland MR, Keller CD, Childers BM, Adeniyi SA,

Corrigall H, Raguin A, Romano MC, Stansfield I. “The

molecular aetiology of tRNA synthetase depletion:

induction of a GCN4 amino acid starvation response

despite homeostatic maintenance of charged tRNA levels”.

Nucleic acids research, 2020; 48(6): 3071–3088. DOI:

https://doi.org/10.1093/nar/gkaa055

27. Percudani R, Pavesi A, Ottonello S. “Transfer RNA gene

redundancy and translational selection in Saccharomyces

cerevisiae”. J. Mol. Biol. 1997; 268: 322–330. DOI: https://

doi.org/10.1006/jmbi.1997.0942

28. Gilchrist MA, Wagner A. “A model of protein translation

including codon bias, nonsense errors, and ribosome

recylcing”. J. Theor. Biol. 2006; 239(4): 417–34. DOI:

https://doi.org/10.1016/j.jtbi.2005.08.007

29. Grosjean H, de Crécy-Lagard V, Marck C. “Deciphering

synonymous codons in the three domains of life:

Co-evolution with specific tRNA modification enzymes”.

FEBS letters. 2010; 584: 252–264. DOI: https://doi.

org/10.1016/j.febslet.2009.11.052

30. Kirchner S, Cai Z, Rauscher R, Kastelic N, Anding

M, Czech A, Kleizen B, Ostedgaard LS, Braakman I,

Sheppard DN, Igntova Z. “Alteration of protein function

by a silent polymorphism linked to tRNA abundance”. PLoS

Biol. 2017; 15: e2000779. DOI: https://doi.org/10.1371/

journal.pbio.2000779

31. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno

AM, Ambudkar SV, Gottesman MM. “A ‘silent’

polymorphism in the MDR1 gene changes substrate

specificity”. Science. 2007; 315(5811): 525–528. DOI:

https://doi.org/10.1126/science.1135308

32. Simhadri VL, Hamasaki-Katagiri N, Lin BC, Hunt

R, Jha S, Tseng SC, Wu A, Bentley AA, Zichel R,

Lu Q, Zhu L, Freedberg D, Monroe DM, Sauna ZE,

Peters R, Komar AA, Kimchi-Sarfaty C. “Single

synonymous mutation in factor IX alters protein

properties and underlies haemophilia B”. J. Med. Genet.

2017; 54: 338–345. DOI: https://doi.org/10.1136/

jmedgenet-2016-104072

33. Fredrick K, Ibba M. “How the sequence of a gene can tune

its translation”. Cell. 2010; 141: 227–229. DOI: https://doi.

org/10.1016/j.cell.2010.03.03321

34. Jacobson GN, Clark PL. “Quality over quantity:

optimizing co-translational protein folding with non-

‘optimal’ synonymous codons”. Curr. Opin. Struct. Biol.

2016; 38: 102–110. DOI: https://doi.org/10.1016/j.

sbi.2016.06.00222

35. Pechmann S, Chartron JW, Frydman J. “Local slowdown

of translation by nonoptimal codons promotes nascent-

chain recognition by SRPin vivo”. Nat. Struct. Mol. Biol.

2014; 21: 1100–1105. DOI: https://doi.org/10.1038/

nsmb.291923

36. Zhang G, Ignatova Z. “Folding at the birth of the nascent

chain: coordinating translation with co-translational

folding”. Curr. Opin. Struct. Biol. 2011; 21: 25–31. DOI:

https://doi.org/10.1016/j.sbi.2010.10.008

37. Chaney JL, Steele A, Carmichael R, Rodriguez A, Specht

AT, Ngo K, Li J, Emrich S, Clark PL. “Widespread position-

specific conservation of synonymous rare codons within

coding sequences”. PLoS Comput. Biol. 2017; 13: e1005531

DOI: https://doi.org/10.1371/journal.pcbi.1005531

38. Zhang G, Ignatova Z. “Generic algorithm to predict the

speed of translational elongation: implications for protein

biogenesis”. PLoS ONE. 2009; 4(4), e5036. DOI: https://doi.

org/10.1371/journal.pone.0005036

39. Lopinski JD, Dinman JD, Bruenn JA. “Kinetics of

Ribosomal Pausing during Programmed −1 Translational

Frameshifting”. Mol. Cell. Biol. 2000; 20(4): 1095–1103.

DOI: https://doi.org/10.1128/MCB.20.4.1095-1103.2000

40. https://www.ebi.ac.uk/Tools/msa/clustalo/.

https://doi.org/10.1093/nar/15.3.1281
https://doi.org/10.1093/oxfordjournals.molbev.a040335
https://doi.org/10.1016/0022-2836(81)90363-6
https://doi.org/10.1016/0022-2836(82)90250-9
https://doi.org/10.1016/0022-2836(82)90250-9
https://doi.org/10.1093/nar/10.22.7055
https://doi.org/10.1016/S0021-9258(19)81068-2
https://doi.org/10.1016/S0021-9258(19)81068-2
https://doi.org/10.1016/j.mib.2017.01.003
https://doi.org/10.1016/j.mib.2017.01.003
https://doi.org/10.1042/BST20170422
https://doi.org/10.1042/BST20170422
https://doi.org/10.1371/journal.pcbi.1002866
https://doi.org/10.1371/journal.pcbi.1002203
https://doi.org/10.1371/journal.pcbi.1002203
https://doi.org/10.1093/nar/gkaa055
https://doi.org/10.1006/jmbi.1997.0942
https://doi.org/10.1006/jmbi.1997.0942
https://doi.org/10.1016/j.jtbi.2005.08.007
https://doi.org/10.1016/j.febslet.2009.11.052
https://doi.org/10.1016/j.febslet.2009.11.052
https://doi.org/10.1371/journal.pbio.2000779
https://doi.org/10.1371/journal.pbio.2000779
https://doi.org/10.1126/science.1135308
https://doi.org/10.1136/jmedgenet-2016-104072
https://doi.org/10.1136/jmedgenet-2016-104072
https://doi.org/10.1016/j.cell.2010.03.03321
https://doi.org/10.1016/j.cell.2010.03.03321
https://doi.org/10.1016/j.sbi.2016.06.00222
https://doi.org/10.1016/j.sbi.2016.06.00222
https://doi.org/10.1038/nsmb.291923
https://doi.org/10.1038/nsmb.291923
https://doi.org/10.1016/j.sbi.2010.10.008
https://doi.org/10.1371/journal.pcbi.1005531
https://doi.org/10.1371/journal.pone.0005036
https://doi.org/10.1371/journal.pone.0005036
https://doi.org/10.1128/MCB.20.4.1095-1103.2000
https://www.ebi.ac.uk/Tools/msa/clustalo/

12Raguin et al. Journal of Open Research Software DOI: 10.5334/jors.385

TO CITE THIS ARTICLE:
Raguin A, Stansfield I, Romano MC. 2023 ExpressInHost: A Codon Tuning Tool for the Expression of Recombinant Proteins in Host
Microorganisms. Journal of Open Research Software, 11: 2. DOI: https://doi.org/10.5334/jors.385

Submitted: 19 July 2021 Accepted: 16 September 2022 Published: 01 February 2023

COPYRIGHT:
© 2023 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://doi.org/10.5334/jors.385
http://creativecommons.org/licenses/by/4.0/

