
Stieg, J, et al. 2019 UN-CODE: Software for Structuring and Visualizing
Collective Decision-Making Based on Qualitative Data. Journal of Open
Research Software, 7: 25. DOI: https://doi.org/10.5334/jors.246

Journal of
open research software

SOFTWARE METAPAPER

UN-CODE: Software for Structuring and Visualizing
Collective Decision-Making Based on Qualitative Data
Julian Stieg1, Peter Marks2 and Lasse Gerrits1

1	Innovative and Complex Technological Systems, University of Bamberg, Bamberg, DE
2	Department of Public Administration, Erasmus University Rotterdam, Rotterdam, NL
Corresponding author: Peter Marks (marks@essb.eur.nl)

UN-CODE is a web-based tool for structuring and visualizing collective decision-making processes using
qualitative, case-based data. It offers a database management tool and visualization method in one. The
structure of the database and the visualizations derive from a model that is rooted in evolutionary biology
and that has been transformed for social scientists. It features three principal dimensions: problem and
solution definitions (PSD), weighted connectedness (c_score) as a network measure, and fitness (FIT) to
describe the probability of actors reaching their goals in the collective decision-making process. The
results are visualized in a scalable 3D-environment that shows the main dynamics of such in one quick
overview.

Keywords: Decision-making process; Fitness Landscape; Complexity Sciences; Social Sciences;
3D Visualization; case-study management
Funding statement: This research has been funded by The Netherlands Organisation for Scientific
Research research grant no. 451-10-022.

(1) Overview
Introduction
Collective decision-making processes concern situations
where two or more actors aim to push through their
ideas and preferences about a certain issue. There is a
long history of research on collective decision-making
processes. A considerable part of that research utilizes
qualitative, case-based data. Such data is notoriously hard
to store and utilize in a structural fashion. We developed a
model and a method with which such data can be processed
[1]. To assist researchers using the method we developed
the software tool UN-CODE (UNderstanding COllective
Decision-making). The tool can be found at www.un-code.
org. UN-CODE can be used to store, structure, process and
relate (unstructured) qualitative data, which subsequently
can then be visualized for analytical purposes. We first
explain the background of the method before discussing
the details of the software.

Collective decision-making processes take place over
time: there is a starting situation, several negotiation
stages, and an outcome. The proposed method maps those
processes as sequences of events [2]. Grouped sequences
form a lineage. Major events may demarcate the start or
end of such a process (cf. the rounds model [3]). Each period
between such major events is captured in a (somewhat)
static situation called the fitness field. Each fitness field
is populated by the relevant actors. The positioning of

each actor is primarily mapped in two dimensions. The
first dimension represents the ‘problem and solution
definitions’ (PSD). This expresses the substantive stance
an actor has in the face of a certain collective issue. The
second represents the connections between actors, as
expressed in the c_score. Connectedness is the number of
actual links in a network as ratio of the number of possible
links (see density in social network analysis [4]). Following
Abbott [2], the researcher has to select and connect the
events in a plausible way; i.e. the researcher will have to
reconstruct what has happened and how it has happened.

In the unfolding of the decision-making process actors
will find out which elements of their PSD’s are similar
to elements of other actors’ PSD’s. (Dis)similarities in
the problem and solution definitions mean actors (dis)
connect on content. That is, actors’ connectedness is
affected by the extent to which PSD’s converge or diverge.
Conversely, elements in PSD’s are affected by interaction
with other actors, i.e. actor connectedness affects the
PSD’s of actors. In other words, connectedness and PSD’s
are configurational [1]. An adjustment based on content
(similar elements of the PSD’s) enters, attributing weight
(w) to the c_score for every actor. UN-CODE makes
automated model calculations for this. PSD and c_score
are visualized on the x and y-axis, respectively.

Goal attainment means that the collective decision-
making process is concluded in favor of an actor or

https://doi.org/10.5334/jors.246
mailto:marks@essb.eur.nl
http://www.un-code.org/
http://www.un-code.org
http://www.un-code.org

Stieg et al: UN-CODEArt. 25, page 2 of 6

a group of actors and occurs when certain PSD’s are
fulfilled. In the model, this is expressed by fitness (FIT),
and is visualized on the z-axis. Fitness is attributed on the
basis of the empirical data because any configuration of
PSD and c_score can be associated with fitness gains or
losses. Which particular PSD comes out on top in the short
and long run is not a given (e.g. [5]) as it depends on the
situational feedback as well as the strategies followed by
actors. As such, researchers will have to interpret the data
and assign scores by themselves. UN-CODE will help in
structuring and visualizing the data.

When all data is processed in UN-CODE, it outputs
a string of fitness fields. Each fitness field provides a
snapshot of the positions of actors relative to each other
for that particular time frame, as well as the extent to
which their goals were reached. By looking at the fields
as they occur over time, one will be able to discern if and
how the field changed over time, what strategies were
used by actors in their attempts to reach their goals, the
persistency of certain PSD’s, and what PSD’s have survived
the selection process. As such, the researcher will be able
to associate certain strategies and inter-actor dynamics
with outcomes. In addition, UN-CODE can output so-called
persistence maps, which are overviews of the survival (or
demise) of certain PSD’s. The approach is based on the
adaptive fields and subsequent iterations in the form of
fitness landscapes from evolutionary biology. Readers
interested in the background of this approach are kindly
referred to [1, 6, 7].

There was no software, open source or otherwise,
available that could process and visualize the data in the
ways intended. Consequently, we developed UN-CODE, to
be found at www.un-code.org. UN-CODE is implemented as
a web-software in order to facilitate (distributed) research
teams to work with the software. With this contribution,
we release the source code as open source software to the
scientific community to work and experiment with it.

Implementation and architecture
UN-CODE is implemented as an open source web-based
software. Due to its web-based nature, it can either be
accessed using www.un-code.org – a web space hosted by
the scientists behind the project – or it can be downloaded
and installed on a local standard web server, such as
XAMPP.

The backend (PHP, SQL) and the frontend (HTML,
JavaScript, JQuery, WebGL) are combined using the Smarty
template engine, in order to provide a clear distinction
of markup language (HTML) and backend language
(PHP). Throughout the front-end, many dynamic AJAX
functionalities – asynchronous server-interactions – are
used to provide a fluid user experience and to provide
advanced functionalities, such as to facilitate 3D
visualization or data management.

All client requests are first being captured by the main
index.php file. At this point, two kinds of distinctions
are made. First, is the request (a) targeted at loading a
new front-end file (i.e. a different Smarty templates), or
(b) is the backend required to provide an answer to a
dynamic AJAX call? Secondly, is the request being made

in by (a) an authenticated user that has logged in before
(shown by cookies tied to a specific user ID) or by (b) an
unauthenticated user? When necessary, database queries
are made by PHP’s MySQLi interface towards the MySQL
database server. UN-CODE employs a separate MySQL
databases for security purposes: one specifically for
storing sensitive user data, such as passwords (1 table)
and one specifically for entered case data (2 tables + 5 per
case). User passwords are encrypted using SHA-512 hash
generation.

The 3D visualization functionality of UN-CODE is done
within the browser using the Three.JS library, taking
advantage of the WebGL interface – thus enabling the
software to use real 3D graphic acceleration from within
any compatible browser. This approach allows a dynamical
(rotation, zoom) and on-the-fly data visualization in a
scalable environment. Although a dedicated video card is
recommended for improved performance, graphics chips
supporting OpenGL 2.1 or higher also work.

As UN-CODE is also a data management tool, it provides
the possibility of storing (qualitative) data and data
sources connected to the study, such as documents or
images up to the size of 32 Mbytes per file in any format,
directly online on the server. The files are uploaded via
the browser and stored in the case study database only,
accessible from within a personal account. This account
is password-protected, stored encrypted in the database,
all data is confidential and only accessible through the
personal account (all user passwords in the UN-CODE
database are stored with the secure SHA-512 algorithm),
offering always-online availability and data protection
at the same time. Figure 1 presents an overview of the
system architecture.

Illustrated example
UN-CODE has already been used for various studies [1].
There are two specific forms of output generated by
UN-CODE: 3D visualizations and persistence maps. The
data entry for a study (in this illustration for the Sports
in the city case study) is done in a main input mask as
presented in Figure 2.

3D visualization (see Figure 3)
The data, once processed, are rendered on three axes:
PSD on the x-axis, CON (i.e. final c_score) on the y-axis
and FIT on the z-axis. This complies with the common 3D
representation of fitness landscapes in other literature.
The results of PSD and CON are normalized between 0 and
1 to allow for clear visual representation. Researchers can
opt to make the PSD values relative to the whole lineage or
to certain selected fields in the options menu. This can be
useful in those instances where actors keep entering and
leaving the fields, i.e. when their presence is intermittent.

Researchers can select any combination of fields and
actors to visualize. This allows the observation of a specific
configuration at a specific point in time. Or, if multiple
fields are selected, it allows monitoring the movement
of one or multiple actors throughout the lineage. The
movement can also be highlighted by using arrows to
connect actors’ positions in time. Different time positions

http://www.un-code.org
http://www.un-code.org

Stieg et al: UN-CODE Art. 25 page 3 of 6

are labelled with t1…tn, which depending on preference
can be turned off or on. Also, each earlier positions can be
rendered transparent to aid visually.

To allow for detailed examinations and view small
iterations within the visualization, the camera view
features free 3D-rotation by holding the left mouse
button or using the arrow keys. Zooming is supported
using the mouse wheel. 3D-labels for actors and grid will
always rotate facing the camera. UN-CODE has a function
to return to a standard original camera position, offering
comparability between snapshots. The output can be
saved as *.jpg files. Options include (1) colored or gray

scale output, (2) highlighting one or more specific actors
in the field, and (3) sloped, peaked and columned fitness
representation. Whenever selecting any option, changes
to the visualization apply instantly and no reload of the
web page is required due to the utilization of AJAX and
WebGL-abilities. These options help in uncluttering the
visual information in crowded fields and lineages.

Persistence mapping (see Figure 4)
Over time, the interaction and alignment between actors
in search for fitness produces a number of substantive
outcomes, i.e. certain problem and solution definitions

Figure 2: UN-CODE’s main data input mask. From left to right: fields/sources, actors, problem/solution definitions,
c_score calculation/fitness, visualization/export methods.

Figure 1: Overview of the un-code.org system architecture and utilized technologies.

http://un-code.org

Stieg et al: UN-CODEArt. 25, page 4 of 6

are retained while others disappear. Tracing the evolution
of PSD’s over time, and the positions and actions of actors
tied to those PSD’s, will give a thorough insight into which

options survive in the long run. For this reason UN-CODE
offers the possibility of mapping the persistence of PSD’s
throughout a lineage. The output is done per lineage as

Figure 3: UN-CODE’s 3D Visualization: A typical case examination, highlighting the movement of an actor throughout
multiple fields in relation to other actors. Here, the actor in question is highlighted in grey, but can also be shown
in color. The arrow shows the route that the actor followed through time. Alternatively, one can select a number of
actors to be visible at a given time stamp.

Figure 4: UN-CODE’s Persistence Mapping: Helping to see which definitions survived over time. The example shown
here is slightly adjusted from [1].

Stieg et al: UN-CODE Art. 25 page 5 of 6

an automatically created *.xlsx sheet (using the library
PHPExcel).

In this output, the fitness fields of the selected lineage
are arranged by time on the x-axis, the PSD’s used
anywhere in the study are presented on the y-axis, group-
separated by problems and solutions. Each cell shows the
percentage of actors that share this definition within this
very field. Next to the percentage, the exact number of
sharing actors and the total number of actors active during
this field are shown. The strength of shared definitions
is highlighted through different shades of grey – with
black representing non-shared, dark grey weakly-shared
definitions and light grey representing broadly-shared
definitions.

There is also the opportunity to present two extra
columns on the right to show the number of total
shares of this definition throughout the lineage, and
the persistence score. The latter expresses in how many
fields of the lineage a definition was active, i.e. shared by
at least one actor. This presentation allows the researcher
to keep track of definitions getting weaker or stronger at
specific points in time and helps pointing out possible
explanation approaches why some definitions ended up
being successful. It is possible to render the output in
colors for other presentation purposes.

Quality control
UN-CODE has been developed in an agile iterative process
with development and feedback cycles over a duration
of almost two years. Each iteration was put through
both technical and functional testing. Technical testing
consisted of going through each program component
and searching for technical bugs or incompatibilities.
Functional testing was done by the academic team and
other numerous individuals in order to find scientific
implausibilities and to determine in what ways the
functioning of UN-CODE had to be altered or expanded.
The feedback on each version has been incorporated in
each subsequent release.

(2) Availability
UN-CODE is available as open source to every interested
individual or scientific organization, either to be used
online under www.un-code.org (hosted by the creators)
or to be downloaded via GitHub (https://github.
com/uncodecomplexsystems/Un-Code) and to be installed
locally using a common http server and a MySQL server.

There are tutorials to show the workings of
UN-CODE, how accounts can be created, how data
can be stored and processed, and how output can be
created (http://un-code.org/?page_id=39). A technical
information page explains what is necessary for full
(local) usage and how to contact the developers in case
of extra questions (http://un-code.org/?page_id=82).
Also, users can create a demo account to check the
functionality of the software (http://un-code.org/app/).
This demo account will automatically reset for each
user. For actual usage of the software, users can create
the aforementioned personal account for safe storage of
their data and related analyses.

Operating system
UN-CODE has been tested in modern web browsers,
including the most widely-used ones, i.e. Google Chrome
and Mozilla Firefox. Due to its web-based architecture, it
can be used independently of the operating system.

Programming language
UN-CODE has been written using PHP 5.6 (www.php.net).
The database queries have been written in MySQL 5 (www.
mysql.com). The templates have been written using the
Smarty code of the Smarty template engine. Common
JavaScript and JQuery (www.jquery.com) code is used
throughout the software. The 3D visualization component
includes code written in WebGL and THREE.JS (www.
threejs.org).

Additional system requirements
On the server side, UN-CODE’s file upload component
benefits from php.ini settings of memory_limit
(recommended: 64M or more), and upload_max_filesize
(recommended: 16M or more).

On the client side, UN-CODE has been designed towards
Google Chrome or Mozilla Firefox and a screen resolution
of 1680x1050 or higher. Additionally, the 3D visualization
component – utilizing WebGL technology and therefore
hardware 3D-acceleration –benefits heavily from a
dedicated graphics card. Even though, the visualization
will still work with modern onboard GPUs, frame rate
and responsiveness are improved dramatically with a
dedicated one (e.g. Nvidia or AMD hardware).

Dependencies
All included dependencies are open source.
•	 JQuery, version 2.1.3 or higher (MIT license): http://

www.jquery.org
•	 Smarty, version 3.1.21 or higher (GPLv3): https://

www.smarty.net/
•	 PHPExcel, version 1.8.1 or higher (LGPL): https://

github.com/PHPOffice/PHPExcel
•	 Three.JS, version R73 or higher (MIT license): https://

threejs.org/
•	 Three.Terrain.js, version 1.2.1-20150607 or higher

(MIT license): http://www.isaacsukin.com/coding

List of contributors
1.	 Julian Stieg: Development and programming.
2.	 Peter Marks: Development, documentation and testing.
3.	 Lasse Gerrits: Development, documentation and

testing.

Software location
Code repository
The code is available via GitHub and is published as-is
under the open source license GPLv3.

Name: un-code
�Identifier: https://github.com/uncodecomplexsystems/
Un-Code
License: GNU General Public License v.3 (GPLv3)
Version published: 1.0
Date published: 28/07/2018

http://www.un-code.org
https://github.com/uncodecomplexsystems/Un-Code
https://github.com/uncodecomplexsystems/Un-Code
http://un-code.org/?page_id=39
http://un-code.org/?page_id=82
http://un-code.org/app/
http://www.php.net
http://www.mysql.com
http://www.mysql.com
http://www.jquery.com
http://www.threejs.org
http://www.threejs.org
http://www.jquery.org
http://www.jquery.org
https://www.smarty.net/
https://www.smarty.net/
https://github.com/PHPOffice/PHPExcel
https://github.com/PHPOffice/PHPExcel
https://threejs.org/
https://threejs.org/
http://www.isaacsukin.com/coding
https://github.com/uncodecomplexsystems/Un-Code
https://github.com/uncodecomplexsystems/Un-Code

Stieg et al: UN-CODEArt. 25, page 6 of 6

Language
English

(3) Reuse potential
UN-CODE has a high reuse potential “as is” and has already
been a useful tool for researchers working on different
projects from a wide spectrum of collective decisions-
making processes. Future development will be driven by
user requirements and needs.

Competing Interests
The authors have no competing interests to declare.

References
1.	 Gerrits, L M and Marks, P K 2017 Understanding

Collective Decision Making: a fitness landscape model
approach. Cheltenham, UK: Edward Elgar. DOI: https://
doi.org/10.4337/9781783473151

2.	 Abbott, A 2001 Time Matters: On Theory and Method.
Chicago: The University of Chicago Press.

3.	 Teisman, G R 2000 Models for Research into
Decision-making Processes: on Phases, Streams and
Decision-making Processes. Public Administration,

78(4): 937–956. DOI: https://doi.org/10.1111/1467-
9299.00238

4.	 Tichy, N M, Tushman, M L and Fombrun, C 1979
Social Network Analysis for Organizations. Academy of
Management Review, 4(4): 507–519. DOI: https://doi.
org/10.5465/amr.1979.4498309

5.	 John, P 1999 Ideas and interests; agendas and
implementation: An evolutionary explanation of
policy change in British local government finance.
The British Journal of Politics & International Relations,
1(1): 39–62. DOI: https://doi.org/10.1111/1467-
856X.00003

6.	 Gerrits, L M and Marks, P K 2015 The evolution
of Wright’s (1932) adaptive field to contemporary
interpretations and uses of fitness landscapes in
the social sciences. Biology and Philosophy, 30(4):
459–479. DOI: https://doi.org/10.1007/s10539-014-
9450-2

7.	 Marks, P, Gerrits, L and Marx, J 2019 How to use
fitness landscape models for the analysis of collective
decision-making: a case of theory-transfer and its
limitations. Biology & Philosophy, 34(1). DOI: https://
doi.org/10.1007/s10539-018-9669-4

How to cite this article: Stieg, J, Marks, P and Gerrits, L 2019 UN-CODE: Software for Structuring and Visualizing
Collective Decision-Making Based on Qualitative Data. Journal of Open Research Software, 7: 25. DOI: https://doi.org/10.5334/
jors.246

Submitted: 05 September 2018 Accepted: 19 July 2019 Published: 31 July 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press

https://doi.org/10.4337/9781783473151
https://doi.org/10.4337/9781783473151
https://doi.org/10.1111/1467-9299.00238
https://doi.org/10.1111/1467-9299.00238
https://doi.org/10.5465/amr.1979.4498309
https://doi.org/10.5465/amr.1979.4498309
https://doi.org/10.1111/1467-856X.00003
https://doi.org/10.1111/1467-856X.00003
https://doi.org/10.1007/s10539-014-9450-2
https://doi.org/10.1007/s10539-014-9450-2
https://doi.org/10.1007/s10539-018-9669-4
https://doi.org/10.1007/s10539-018-9669-4
https://doi.org/10.5334/jors.246
https://doi.org/10.5334/jors.246
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Illustrated example
	3D visualization (see Figure 3)
	Persistence mapping (see Figure 4)

	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements

	Dependencies
	List of contributors
	Software location
	Code repository

	Language

	(3) Reuse potential
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

