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Previous definitions of a Discrete Hankel Transform (DHT) have focused on methods to approximate the 
continuous Hankel integral transform without regard for the properties of the DHT itself. Recently, the 
theory of a Discrete Hankel Transform was proposed that follows the same path as the Discrete Fourier/
Continuous Fourier transform. This DHT possesses orthogonality properties which lead to invertibility 
and also possesses the standard set of discrete shift, modulation, multiplication and convolution rules. 
The proposed DHT can be used to approximate the continuous forward and inverse Hankel transform. This 
paper describes the matlab code developed for the numerical calculation of this DHT.
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(1) Overview
Introduction 
There have been many attempts to define a Discrete 
Hankel Transform (DHT) in the literature, however prior 
work has focused on proposing methods to approximate 
the calculation of the continuous Hankel integral, for 
example as given in [1, 2]. This stands in stark contrast 
to the approach taken with the Fourier transform where 
the Discrete Fourier Transform (DFT) is a transform in 
its own right, with its own mathematical theory of the 
manipulated quantities. An additional feature of a care-
fully derived DFT is that it can be used to approximate 
the continuous Fourier transform, with relevant sampling 
and interpolation theories that can be used. Recently, a 
DHT was proposed as a complete and orthogonal trans-
form that possesses its own mathematical theory, includ-
ing the standard set of shift, modulation, multiplication 
and convolution rules [3]. In addition, this DHT can be 
used to approximate the continuous Hankel transform in 
the same manner that the Discrete Fourier transform is 
known to be able to approximate the continuous Fourier 
transform.

Overview of the Discrete Hankel Transform
The Continuous Hankel Transform
The forward Hankel transform of order n transforms 
a function f(r) in the spatial domain to a function  
F(ρ) in the spatial frequency domain and is given by 
[4, p. 5.6]

  (1)

where Jn (z) is the nth order Bessel function of the first 
kind. The inverse transform is given by

	 (2)

More on the continuous transform can be found in [4].

Discrete Hankel Transform 
The nth order discrete Hankel transform (DHT) proposed 
in [3] is defined as the transformation of the discrete vec-
tor f to vector F given by

			   (3)

This discrete transform consists of taking an N – 1 vector f 
and a (N – 1) × (N – 1) square matrix of Hankel order n, YnN, to 
perform the matrix-vector multiplication and obtain the N – 1 
DHT vector F. If the DHT as defined in (3) is used to approxi-
mate the CHT, then the vector f represents the sampled func-
tion to be transformed and the vector F represents the discrete 
function in the transformed (Hankel) domain. The YnN matrix 
in equation (3) is defined as having the m, kth entry given by 

	
  (4)

where jnk is the kth zero of the Bessel function of the first 
kind of order n[3]. Properties of the DHT as defined in 
equation (3) are shown in [3].

Since the core of the tested discrete transform is the 
transformation matrix YnN, various properties have to be 
maintained. One of these properties is that the matrix YnN 
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possesses orthogonality properties, where YnNYnN = I. In 
order to preserve the requisite properties of YnN and there-
fore of the DHT itself, the first Bessel zero used in comput-
ing the entries of the YnN matrix is the first non-zero value of 
the Bessel zero of order n. If the YnN matrix is not assembled 
following this rule, the matrix loses its orthogonality prop-
erty and thus performing the discrete transform leads to 
improper results. If the DHT is used to approximate a CHT, 
then this restriction also applies to the discretization of the 
continuous function, as shall be discussed further below. 

The inverse discrete Hankel transform f of the vector F 
is then given by

			   (5)

The discrete forward and inverse Hankel transforms as 
given in equations (3) and (5) have been shown to pos-
sess the standard set of shift, modulation, multiplica-
tion and convolution rules. In addition, this DHT can be 
used to approximate the continuous Hankel transform in 
the same manner that the Discrete Fourier transform is 
known to be able to approximate the continuous Fourier 
transform at certain discrete points. 

Discrete Hankel Transform to approximate the 
Continuous Hankel Transform 
Given a continuous function f(r) evaluated at the discrete 
points rnk in the space domain (1 ≤ k ≤ N – 1), its nth order 
Hankel-transform function F(ρ) evaluated at the discrete 
points ρnm (1 ≤ m ≤ N – 1), can be approximately given by [3]

	 (6)

where α is a scaling factor to be discussed below, and  
F[m] = F(ρnm), f[k] = f(rnk). 

Conversely, given a continuous function F(ρ) evaluated 
at the discrete points ρnm in the frequency domain (1 ≤ m 
≤ N – 1), its nth order inverse Hankel transform function 
f(r) evaluated at the discrete points rnk (1 ≤ k ≤ N – 1), can 
be approximately given by

	 (7)

For both the forward and inverse transforms, α is a scaling 
factor which depends on the function properties and shall 
be discussed further below. The choice of discretization 
points rnk and ρnm is also discussed below. The full theory 
of the discrete Hankel transform is given in [3].

Discretization Points
In order to properly use the discrete transform to approxi-
mate the continuous transform, a function has to be dis-
cretized at specific sampling points. For a finite spatial 
range [0, R] and a Hankel transform of order n, these sam-
pling points are given in the space domain as 

	 (8)

For the finite frequency domain range [0, Wρ] and a 
Hankel transform of order n, the sampling points are 
given by

	 (9)

It is important to note that as in the case of the computa-
tion of the transformation matrix YnN, the first Bessel zero 
jn1 used in computing the discretization points is the first 
non-zero value. 

The relationship , derived in [3], holds between 

the ranges in space and frequency. Choosing N deter-
mines the dimension (size) of the DHT and determines jnN. 
The determination of jnN (via choosing N) determines the 
range in one domain once the range in the other domain 
is chosen. In fact, any two of R, Wρ, jnN can be chosen but 
the third must follow from WρR = jnN. A similar relation-
ship applies when using the Discrete Fourier Transform, 
any two of the range in each domain and the size of the 
DFT can be chosen independently. 

Scaling Factor
The scaling factor α necessary for using the DHT to 
approximate the CHT depends on whether the func-
tion is space-limited or band-limited. Since it might be 
hard to determine if a function is space or band limited, 
the concept of effective limit is introduced. Therefore, 
a function defined as being “effectively limited in space 
by R” means that if r > R, then as r → ∞, f(r) → 0. In 
other words, the function can be made as close to zero as 
desired by selecting an R that is large enough. The same 
idea can be applied to the spatial frequency domain, 
where the effective domain would be denoted by Wρ. The 
conditions and corresponding scaling factors are listed 
in Table 1.

The detailed derivation of these scaling factors was 
shown in [3]. It can be observed that the scaling factors 
for the space-limited or frequency limited cases can be 
derived from each other via WρR = JnN.

Implementation and architecture
The software is based on the MATLAB programming 
language. The implementation of the discrete Hankel 
transform is decomposed into distinct functions. These 
functions consist of the various steps that have to be per-
formed in order to properly execute the transform. These 
steps are as follows:

Condition Scaling Factor

1 Space-limited function

2 Frequency-limited function

Table 1: Scaling factor under various conditions.
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1.	 Calculations of N Bessel zeros of the Bessel function 
of order n

2.	 Generation of N sample points (if using the DHT to 
approximate the continuous transform)

3.	 Discretization of the function (if needed)
4.	 Creation of the YnN transformation matrix
5.	 Performing the matrix-function multiplication

The steps are the same regardless of if the function is in the 
space or frequency domain and are summarized in Figure 1. 

Furthermore, the YnN transformation matrix is used for 
both the forward and inverse transform. Steps 2–3 only 
need to be performed if the function (vector) to be trans-
formed is not already given as a set of discrete points. In 
the case of a continuous function in either the space or fre-
quency domain, it is important to use the sampling points 
as proposed in equations (8), (9) and then to discretize the 
continuous function by evaluating at these points. Failing 
to do so results in the function not being properly trans-
formed since there is a necessary relationship between the 
sampling points and the transformation matrix YnN. In order 
to perform the steps listed above, several Matlab functions 
have been developed. These functions are listed in Table 2.

Additionally, the matlab script GuidetoDHT.m is 
included to illustrate the execution of the necessary com-
putational steps.

Quality control 
The software was tested by using the DHT to approxi-
mate the computation of both the continuous Hankel 

forward and inverse transforms and comparing the 
results with known (continuous) forward and inverse 
Hankel transform pairs. Different transform orders n 
were evaluated. 

For the purpose of testing the accuracy of the DHT and 
IDHT, the dynamic error was used, defined as [6]

	 (10)

This error function compares the difference between the 
exact function values f(v) (evaluated from the continuous 
function) and the function values estimated via the dis-
crete transform, f*(v), scaled with the maximum value of 
the discretely estimated samples. Equation (10) can be used 
to evaluate the computation of either forward or inverse 
Hankel transform via the DHT/IDHT and compared with 
known continuous Hankel relationships. The dynamic 
error uses the ratio of the absolute error to the maximum 
amplitude of the function on a log scale. Therefore, nega-
tive decibel errors imply an accurate discrete estimation 
of the true transform value. The transform was also tested 
for accuracy on itself. This is performed by consecutive 
forward and then inverse transformation in order to verify 
that the transforms themselves do not add errors. For this 
evaluation, the average absolute error  was 
used.

The methodology of the testing is given in further detail 
in [7] and also in the theory paper, [3].

Figure 1: Steps for evaluation of DHT.

Function Name Calling Sequence Description

besselzero besselzero(n,k,kind) Calculation of k Bessel zeros of the nth order Bessel function of kind – 
developed in [5]

freqSampler freqSampler(R,zeros) Creation of sample points in the frequency domain (eq. (9))

spaceSampler spaceSampler(R,zeros) Creation of sample points in the space domain (eq. (8))

YmatrixAssembly YmatrixAssembly(n,N,zeros) Creation of YnN matrix (eq. (4)) from the zeros

Table 2: Set of available functions.
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(2) Availability 
Operating system
Windows XP and higher.

Programming language
Matlab

Additional system requirements
If using Matlab 7, minimum system requirements are 
512MB of RAM (1024 MB recommended) and 460MB of 
hard disk space. System requirements for Matlab R2014 
require 1024 MB (At least 2048 MB recommended) or 
RAM and 1 GB for MATLAB only, 3–4 GB for a typical 
installation. This code should run on older versions of 
Matlab although it was tested using Matlab R2014.

Dependencies
Matlab software by mathworks.

List of contributors
Ugo Chouinard, Natalie Baddour, Greg von Winckel

Software location
Archive (e.g. institutional repository, general repository) 
(required) 

Name: Figshare
Persistent identifier: http://dx.doi.org/10.6084/

m9.figshare.1453205 
Licence: BSD
Publisher: Natalie Baddour
Date published: 18/06/15

Code repository (e.g. SourceForge, GitHub etc.) (required) 
Name: GitHub
Persistent identifier: https://github.com/uchouinard/

DiscreteHankelTransform 
Licence: BSD
Publisher: Natalie Baddour

Date published: 07/12/16

Language
English

(3) Reuse potential 
The Discrete Hankel Transform is applicable to many areas 
of scientific computation and potential reuse could be very 
high. Further details on applications can be found in [3].

Competing Interests
The authors have no competing interests to declare.
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