
Damerow, J et al 2017 The Giles Ecosystem – Storage, Text
Extraction, and OCR of Documents. Journal of Open Research
Software, 5: 26, DOI: https://doi.org/10.5334/jors.164

Journal of
open research software

SOFTWARE METAPAPER

The Giles Ecosystem – Storage, Text Extraction, and OCR
of Documents
Julia Damerow, B. R. Erick Peirson and Manfred D. Laubichler
Arizona State University, US
Corresponding author: Julia Damerow, Scientific Software Engineer (jdamerow@asu.edu)

In the digital humanities, there is a constant need to turn images and PDF files into plain text to apply
analyses such as topic modelling, named entity recognition, and other techniques. However, although
there exist different solutions to extract text embedded in PDF files or run OCR on images, they typically
require additional training (for example, scholars have to learn how to use the command line) or are
difficult to automate without programming skills. The Giles Ecosystem is a distributed system based on
Apache Kafka that allows users to upload documents for text and image extraction. The system com-
ponents are implemented using Java and the Spring Framework and are available under an Open Source
license on GitHub (https://github.com/diging/).

Keywords: Text extraction; OCR; Document storage; Apache Kafka; Java; Spring Framework
Funding statement: Funding was provided by grants from NSF SES 1656284, ASU Presidential Strategic
Initiative Fund and the Smart Family Foundation.

(1) Overview
Introduction
In the (Digital) Humanities data usually consists of text,
image, audio, or video files. Often researchers travel to
archives in order to access documents, conduct their
research, and make electronic copies if permitted.
Combined with a growing number of archives and libraries
providing access to documents in electronic form, in addi-
tion to services such as Google Books or JSTOR, research-
ers in the digital humanities are increasingly interested in
using digitized documents to run computational analysis
algorithms and provide novel ways of exploring and inter-
acting with the documents. For textual documents, how-
ever, this first requires the documents to be in the form of
text files rather than images or PDFs [7]. Hence, an often
asked question by digital humanities scholars is how to
transform large sets of PDF and image files into text files
they can feed to their text analysis software.

While there exist several tools to extract text from PDFs
(such as Adobe Reader [2] or pdftotext [6]) or run OCR
on images (such as ABBYY FineReader [1] or Tesseract
OCR [13]), this is not a straightforward process. It often
requires a scholar to know how to use a command line or
programming language, or to buy commercial software.
There are several tutorials describing the workflow for
humanities scholars (see for example [10] or [12]); how-
ever, especially when working with corpora comprised of
several hundred or thousand documents, and when facing
errors in the conversion process, many scholars are not

equipped with the skills and knowledge to complete the
task. In addition, after extracting text from a document, all
related files such as the document itself and the extracted
text often need to be stored and made available to other
services. Those other services include tools for computa-
tional text analysis (such as topic modelling algorithms)
or metadata repositories that enable documents to be
searchable and available online.

Some libraries developed solutions for this problem by
customizing or extending existing repository solutions to
incorporate an OCR workflow (see for example [8] or [11]).
However, those solutions are usually specific to the devel-
oping institution, reflecting the institution’s metadata
standards and workflow specifics. Adapting them to new
projects typically requires software developers or frontend
designers, which smaller projects often lack.

The development of the Giles Ecosystem was based on
the need for a system that would allow users to upload
documents for storage, text and image extraction, and
OCR that could easily be integrated with existing applica-
tions. Specifically, the Giles Ecosystem was based on the
following requirements:

•	 The system should allow users to upload (several)
documents. For uploaded images, OCR routines
should be run. For uploaded PDF files, embedded
text should be extracted, for each page an image
should be created, and OCR routines should be run
on each page.

https://doi.org/10.5334/jors.164
mailto:jdamerow@asu.edu
https://github.com/diging/

Damerow et al: The Giles Ecosystem – Storage, Text Extraction, and OCR of DocumentsArt. 26, p. 2 of 5

•	 The system should provide a REST API to allow other
applications to upload and retrieve documents.

•	 The system should be agnostic in regards to a docu-
ment’s metadata. Given that different projects prefer
different metadata standards and many already have a
system in place to capture those, the Giles Ecosystem
should not provide metadata management features.
Instead it should provide a simple REST API to retrieve
documents. Document metadata would be stored in
an external system.

•	 The system should be able to handle varying work-
loads. Especially in the beginning phase of a project,
often many documents have to be processed (sev-
eral hundreds to thousands) followed by only few
documents uploaded sporadically. Hence, the system
should be easily scalable as the need arises.

•	 The system should provide single sign-on authoriza-
tion using OAuth or OpenId Connect.

•	 The system should provide access to images through
the image viewer software Digilib (http://digilib.
sourceforge.net/) but add authorization checks.

At the time of writing this paper, two projects are using
the Giles Ecosystem. The Digital Innovation Group at
Arizona State University developed an application for
metadata management called Amphora (https://github.
com/diging/amphora). It integrates with the Giles
Ecosystem and allows users to upload documents, collect
metadata, and use the extracted text from the documents
sent to the Giles Ecosystem for computational text analy-
sis. Another project is located at the Max Planck Institute
for the History of Science in Berlin. This project developed
a document manager that allows images to be uploaded
and annotated. The images can be displayed along with
the text extracted by the Giles Ecosystem (through OCR).

Implementation and architecture
The Giles Ecosystem has been developed using Java and
the Spring Framework. It consists of five components
(Giles, Nepomuk, Cepheus, Andromeda, and Cassiopeia)
that communicate through an Apache Kafka [3] instance,
which relies on Apache Zookeeper [4]. The Giles Ecosystem
utilizes the image viewer software Digilib [5] to serve
uploaded or extracted images. A relational database such
as MySQL [9] is used to store information about uploaded
files. Moreover, Giles provides an API for external metadata
management apps to integrate with the Giles Ecosystem.
Figure 1 shows the architecture of the Giles Ecosystem.
The following sections will describe each component in
more detail.

Giles
The Giles app allows users or applications to upload files
for processing and to retrieve the processed results. Its
main role is the coordination of the extraction process.
When a user uploads a file, Giles sends a storage request
to Apache Kafka, which will route the request to Nepomuk
for processing. Once a file has been stored, if the file is a
PDF file, Giles will send a text extraction request and then
an image extraction request to Kafka. Image extraction
requests are handled by Cepheus. Text extraction requests
are handled by Andromeda. For each image file that has
either been uploaded to Giles or extracted from a PDF, Giles
will submit an OCR request that is processed by Cassiopeia.

Besides coordinating the extraction process of files, Giles
is the user-facing component of the Giles Ecosystem. This
means that Giles provides all the required webpages for
uploading and browsing files (see for example Figure 2),
an API for the integration of external applications, user
management functionality, and permission checks on
files. When an image file is requested from Giles, it

Figure 1: Giles Ecosystem Architecture.

http://digilib.sourceforge.net/
http://digilib.sourceforge.net/
https://github.com/diging/amphora
https://github.com/diging/amphora

Damerow et al: The Giles Ecosystem – Storage, Text Extraction, and OCR of Documents Art. 26, p. 3 of 5

runs permission checks on the file and if the checks
pass forwards the request to Digilib, which prepares the
images according to the request (e.g. zooms in and clips
the image).

Giles is implemented using the Spring Framework. It
uses Apache Tiles (https://tiles.apache.org/) for page
layout and rendering. Spring Security (https://projects.
spring.io/spring-security/) is used for access control, and
Spring Social (http://projects.spring.io/spring-social/)
is used to allow single sign-on with GitHub, Google,
or the MITREid Connect server (https://github.com/
mitreid-connect/).

Nepomuk
Nepomuk is the storage component of the Giles
Ecosystem. It listens to Apache Kafka for storage requests.
When receiving a storage request, Nepomuk downloads
the file to be stored from the URL provided in the request
and stores it in the file system. Digilib has access to the
folders in which Nepomuk stores uploaded files and can
therefore serve stored image files. Nepomuk then sends
a storage request completion message to Kafka, which is
received and handled by Giles.

Nepomuk provides an API to download stored files,
which is used by Giles when serving files to users and
applications. It also has a simple user interface that

allows administrators to configure Nepomuk. Like Giles,
Nepomuk is built using the Spring Framework. It uses
Apache Tiles for webpage layout and rendering and Spring
Security for access control.

Cepheus
Cepheus extracts images from PDF documents. It handles
image extraction requests sent through Kafka. When
receiving a request, Cepheus downloads the file from
the URL provided in the request and then uses Apache
PDFBox (https://pdfbox.apache.org/) to turn each page
of the PDF into an image. When a request is completed,
Cepheus sends a completion message back to Kafka,
which is received by Giles. Cepheus is developed using the
Spring Framework and Apache Tiles.

Andromeda
Andromeda extracts embedded text from PDF documents.
It handles text extraction requests sent through Kafka.
When receiving a request, Andromeda downloads the
file from the URL provided in the request and then uses
Apache PDFBox (https://pdfbox.apache.org/) to extract
embedded text. When a request is completed, Andromeda
sends a completion message back to Kafka, which is
received by Giles. Andromeda is developed using the
Spring Framework and Apache Tiles.

Figure 2: Webpage for an uploaded and processed pdf document.

https://tiles.apache.org/
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
http://projects.spring.io/spring-social/
https://github.com/mitreid-connect/
https://github.com/mitreid-connect/
https://pdfbox.apache.org/
https://pdfbox.apache.org/

Damerow et al: The Giles Ecosystem – Storage, Text Extraction, and OCR of DocumentsArt. 26, p. 4 of 5

Cassiopeia
Cassiopeia is the OCR component of the Giles Ecosystem.
It handles OCR requests sent through Kafka by running
the OCR software Tesseract (https://github.com/tesser-
act-ocr) on images. It uses Apache Tika (https://tika.
apache.org/) as a bridge to Tesseract and is built on the
Spring Framework and Apache Tiles. When an OCR has
been completed, Cassiopeia sends a completion message
to Kafka, which is received and handled by Giles.

Scaling Up
Cepheus, Andromeda, and Cassiopeia are the most com-
putationally and resource intensive components of the
Giles Ecosystem as they process PDFs and perform OCR.
A Kafka-based architecture lends itself nicely for scaling
up as the need arises. If a higher number of uploads is
expected, Cepheus, Andromeda, and Cassiopeia can be
scaled horizontally by adding more instances. Requests
will then be distributed across several instances rather
than being processed one-by-one.

Quality control
The code has been tested using unit tests. In addition, a
limited amount of load testing has been done by making
upload requests to the Giles API. The load tests created
200 upload requests over a period of 3 minutes. Uploading
files using the API requires polling for upload results.
This resulted in about 420,000 requests distributed over
approximately one hour (around 110 requests per second).
The average response time for the initial upload requests
was 230 ms. Polling requests were answered with an aver-
age response time of 5 ms.

Load tests were executed on a development machine
with a 2.9 GHz processor and 16 GB of memory. All com-
ponents of the Giles Ecosystem were run on the same
machine. In a production environment, each component
would ideally have its own machine, conceivably resulting
in higher throughput and shorter response times.

A Docker Compose file has been created to easily set up
the Giles Ecosystem for testing and evaluation purposes.
It can be found at https://github.com/diging/giles-
eco-docker. Depending on network speed and hardware,
building the docker images might take some time (up
to several hours). On a machine with a 2.9 GHz proces-
sor and 16 GB of memory, the build process takes about
40 minutes. Once set up (instructions are provided in
the readme file), the system can be tested by uploading
a PDF file through the user interface. An example PDF is
provided in the GitHub repository. When processing of a
file has successfully finished, there should be at least one
image and one text file (created through OCR) for each
page available on the document page for the uploaded
file. If an uploaded PDF has embedded text, there should
be one additional text file for the whole document, and
one text file for each page.

(2) Availability
Operating system
When using Docker, the Giles Ecosystem should run
on every system capable of running Docker. If running
directly on a machine, the Giles Ecosystem should run on

every system with Java 8, Apache Tomcat, and Tesseract
installed. The Giles Ecosystem has been tested on Mac OS
X El Capitan, macOS Sierra, Red Hat Enterprise Linux, and
Ubuntu.

Programming language
Java 8

Additional system requirements
In the current setup of the Giles Ecosystem, Giles is the
only component that has to handle high numbers of con-
current requests. Hence, number of cores, CPU speed, and
RAM size can greatly affect Giles’ performance. The exact
configuration has to be determined for each system indi-
vidually depending on expected traffic. Nepomuk requires
sufficient disk space to store uploaded files (recommend
are a minimum of 500 GB for production). Please consult
the Apache Kafka and Apache Zookeeper documentations
for requirements and recommendations for Kafka and
Zookeeper.

When running the Giles Ecosystem using Docker,
16 GB of memory and a 2.2 GHz or higher processor are
recommended. The environment is likely to build with
less memory and on slower processors, however, build
times increase and processes can slow down considerably.
In production environments, it is highly recommended
to run the Giles Ecosystem directly on several machines
rather than using Docker.

Dependencies
The Giles Ecosystem requires either Docker/Docker
Compose or Apache Tomcat 8 (for each component),
Apache Zookeeper, Apache Kafka, MySQL (for Giles and
Nepomuk), and Tesseract (installed on the machine run-
ning Cassiopeia).

List of contributors
Student workers of the Digital Innovation Group, Arizona
State University (software development).

Software location
Code repository

Name: GitHub
Identifier: https://github.com/diging/giles-eco-giles-web
Licence: Mozilla Public License Version 2.0
Date published: Latest release is 01/06/17

The Giles Ecosystem consists of several GitHub repositories.
All repositories are linked from the above repository.

Language
English

(3) Reuse potential
The Giles Ecosystem can be used in any project that
requires plain text files extracted from images or PDFs.
The system can be integrated with other applications
that, for example, manage metadata of uploaded
documents or use extracted text files for analysis and
computation. Due to the Apache Kafka-based architecture
it is also relatively easy to add other applications to

https://github.com/tesseract-ocr
https://github.com/tesseract-ocr
https://tika.apache.org/
https://tika.apache.org/
https://github.com/diging/giles-eco-docker
https://github.com/diging/giles-eco-docker
https://github.com/diging/giles-eco-giles-web

Damerow et al: The Giles Ecosystem – Storage, Text Extraction, and OCR of Documents Art. 26, p. 5 of 5

the processing pipeline. New listener groups can be
registered with Kafka that, for example, listen to text
extraction completion messages or storage completion
messages without interfering with existing applications.
For example, one could allow another application to
listen to text extraction completion messages in order to
automatically run named entity recognition algorithms
on extracted texts or add extracted texts to an indexer
like Solr.

The Giles Ecosystem is being developed and maintained
by the Digital Innovation Group. To report problems or
ask questions, users can create issues in GitHub (https://
github.com/diging/giles-eco-giles-web/issues) or contact
the author JD directly. Issues directly related to the Docker
Compose environment can be reported in the corre-
sponding GitHub repository (https://github.com/diging/
giles-eco-docker/issues).

Acknowledgements
Thanks to Dirk Wintergrün (Max Planck Institute for the
History of Science, Berlin) for installing and using the
Giles Ecosystem for his projects. His input is important
for development goals and improvement of the software.
We also thank Bryan Daniels (Arizona State University)
for reviewing the manuscript and providing helpful
comments.

Competing Interests
The authors have no competing interests to declare.

References
1.	 ABBYY 2017 ABBYY FineReader [computer software].

https://www.abbyy.com/en-us/finereader/.
2.	 Adobe Systems 2017 Adobe Acrobat Reader

[computer software]. https://get.adobe.com/reader/.

3.	 Apache Software Foundation 2017 Apache Kafka
[computer software]. https://kafka.apache.org/.

4.	 Apache Software Foundation 2017 Apache Zookeeper
[computer software]. https://zookeeper.apache.org/.

5.	 Casties, R and Raspe, M 2017 digilib [computer
software]. http://digilib.sourceforge.net/.

6.	 Glyph & Cog, LLC 2014 pdf to text; distributed as part
of Xpdf [computer software]. http://www.foolabs.
com/xpdf/home.html.

7.	 Hockey, S M 2000 Electronic texts in the Humanities.
Oxford University Press. Chapter 2, Creating and
Acquiring Electronic Texts, 11–23. DOI: https://doi.
org/10.1093/acprof:oso/9780198711940.003.0002

8.	 Huculak, J M and Justice, B Report for the University
of Victoria Libraries on Fedora Commons-Based DAMS:
Building Collaborative Scholarship Environments,
A Test Case. Available from: http://hdl.handle.
net/1828/7212 [Accessed 16th December 2016].

9.	 Oracle Corporation 2017 MySQL [computer
software]. https://www.mysql.com/.

10.	Peirson, E B 2015 Tutorial: Text Extraction and OCR
with Tesseract and ImageMagick. Available from:
https://diging.atlassian.net/wiki/display/DCH/
Tutorial%3A+Text+Extraction+and+OCR+with+Tess
eract+and+ImageMagick [Accessed 15th December
2016].

11.	Princeton University Library Plum: A Hydra head
to support digitization workflows. Available from:
https://github.com/pulibrary/plum [Accessed 16th
December 2016].

12.	Schmidt, B Tutorial: Command-line OCR on a Mac.
Available from: http://benschmidt.org/dighist13/?page_
id=129 [Accessed 15th December 2016].

13.	Smith, R, et al. 2017 Tesseract OCR [computer
software]. https://github.com/tesseract-ocr/tesseract.

How to cite this article: Damerow, J, Peirson, B R E and Laubichler, M D 2017 The Giles Ecosystem – Storage, Text Extraction,
and OCR of Documents. Journal of Open Research Software, 5: 26, DOI: https://doi.org/10.5334/jors.164

Submitted: 13 February 2017 Accepted: 15 September 2017 Published: 28 September 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://github.com/diging/giles-eco-giles-web/issues
https://github.com/diging/giles-eco-giles-web/issues
https://github.com/diging/giles-eco-docker/issues
https://github.com/diging/giles-eco-docker/issues
https://www.abbyy.com/en-us/finereader/
https://get.adobe.com/reader/
https://kafka.apache.org/
https://zookeeper.apache.org/
http://digilib.sourceforge.net/
http://www.foolabs.com/xpdf/home.html
http://www.foolabs.com/xpdf/home.html
https://doi.org/10.1093/acprof:oso/9780198711940.003.0002
https://doi.org/10.1093/acprof:oso/9780198711940.003.0002
http://hdl.handle.net/1828/7212
http://hdl.handle.net/1828/7212
https://www.mysql.com/
https://diging.atlassian.net/wiki/display/DCH/Tutorial%3A+Text+Extraction+and+OCR+with+Tesseract+and+ImageMagick
https://diging.atlassian.net/wiki/display/DCH/Tutorial%3A+Text+Extraction+and+OCR+with+Tesseract+and+ImageMagick
https://diging.atlassian.net/wiki/display/DCH/Tutorial%3A+Text+Extraction+and+OCR+with+Tesseract+and+ImageMagick
https://github.com/pulibrary/plum
http://benschmidt.org/dighist13/?page_id=129
http://benschmidt.org/dighist13/?page_id=129
https://github.com/tesseract-ocr/tesseract
https://doi.org/10.5334/jors.164
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Giles
	Nepomuk
	Cepheus
	Andromeda
	Cassiopeia
	Scaling Up

	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Code repository

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2

